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1 Overview of core and valence photoemission

W. Schattke, M.A. Van Hove, F.J. García de Abajo, R. Díez Muiño, and N. Mannella

1.1 Introduction

This chapter attempts to give a general and systematic introduction to the theory and compu-
tation of photoelectron emission from both core and valence levels in surfaces and molecules.
Given this subject’s long history and ample literature, it is not possible, or indeed necessary,
to cover all aspects and contributions here.

It is hoped that this chapter provides a basis for a better understanding of the other contri-
butions in this volume, and that it offers an educational foundation for those wishing to enter
or study the field: it is written in particular with the experimentalist and new reader in mind,
stressing concepts and omitting detailed derivations.

Figure 1.1 describes the basic principles of photoelectron spectroscopy, illustrating various
effects that can take place.

FIGURE

Figure 1.1: Photoemission spectroscopy from a surface, plotted as energy vs. position perpen-
dicular to the surface, with the bulk at left. The curves at right represent measured photoemission
yields. The photon energy is~!. The potentials felt by a photoexcited electron may differ be-
tween atoms A and B, even if these are of the same type, as a result of a chemical shift due to
the surface.

The treatment of the photoemission process starts here with an introduction to Green func-
tion methods, which have found wide and profound applications to address one-particle as
well as many-body problems, both analytically and numerically. The notion of Green func-
tions is presented in a step-wise and didactic fashion in Section 1.2, to introduce the language
and tools used by many theorists in tackling the relatively complicated many-body problem
that underlies processes like photoemission. Simplified models are discussed in relationship
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2 1 Overview of core and valence photoemission

to the more general and accurate description. In particular, the photocurrent expression is
decomposed into its basic ingredients: initial state, final state, transition operator (matrix ele-
ments). And powerful concepts such as self-energy, quasiparticles and spectral representation
are carefully introduced.

The famous Golden Rule is discussed in detail, connecting it with the one-step formulation
of photoemission in Section 1.3: the distinction with the three-step formulation is shown to
have mainly historical relevance, as it is no longer significant with current methods. The basic
photoemission operator is introduced in its various representations and approximations, in
particular the dipole approximation, in Section 1.4.

Of great importance for a numerically accurate treatment of photoemission is knowledge
of the initial and final electronic states. For the initial state, in which the photoelectron resides
before the photoemission process, a clear distinction is drawn between localized levels on
the one hand (such as core levels in a solid surface, or any atomic levels in a free atom) and
delocalized levels on the other hand (such as valence states in a solid surface or molecule).
This is treated in Section 1.5.

The final state describing the photoelectron after excitation can be viewed either in a
multiple-scattering representation, or in a band picture in terms of its full wavefunction. Com-
putational methods to efficiently handle these often complicated states are also discussed in
Section 1.6.

The photoemission matrix elements are treated in Section 1.7: these combine the initial
and final states according to the photoexcitation operator. Again, a distinction is made between
core and valence initial states: it is shown in particular how the case of extended states can be
reduced to the case of localized states.

Optical effects due to the incoming photons are often neglected in modeling photoemis-
sion, in the hope that they are small. Here the focus is on the interaction of the photon with the
material before a photoexcitation occurs. Examples include atomic resonances, treatable from
a localized point of view (Subsection 1.8.1), and screening as well as plasmon resonances,
which need a delocalized treatment (Subsection 1.8.2).

More generally, a variety of optical effects can be treated theoretically and computation-
ally, and can be shown to be quite significant under suitable circumstances. These include
short-wavelength local fields, non-local response, higher-order many-body Coulomb terms,
and mean-field Fresnel considerations, even within a linear response assumption.

Very useful degrees of freedom in photoemission are the polarization of the incident pho-
tons, and the electron spin, usually measured as spin polarization of the outgoing electrons.
In particular, these can be very fruitfully combined in studies of magnetism at surfaces and
interfaces. They also provide high sensitivity to small effects such as relaxed atomic positions.
Relativistic effects also contribute to spin polarization, and are covered as well in Section 1.9.

Finally, the success of the theoretical formalisms is borne out with the help of compu-
tational codes: these make it possible to actually compare theory to experiment, in a first
stage, and then to extract useful new information from experiment. A number of such codes
have been produced, and several of them are advanced enough in their user-friendliness to be
distributed for general use by surface and interface scientists, as discussed in Section 1.10.

The subjects covered in this chapter also highlight needs for the future. Topics such as
dynamic screening of the electron hole, and inclusion of proper thermal vibrations have been
much discussed but not implemented in a systematic way. Also lacking is a proper treatment
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of non-linear optical effects, observed with strong incident light; these will become even more
important with free-electron lasers. Likewise, there is a need for inclusion of time-dependent
effects in the theory, such as occur in pump-probe experiments. To some of these fields de-
tailed reference is found in other chapters of this book.

1.2 Green function methods

1.2.1 Photoemission and the many-body problem

Fundamental to the behavior of a collective system are the interactions between the many par-
ticipating bodies. The many-body problem can be defined as the study of how the interactions
between bodies alters the behavior of the isolated, non-interacting bodies.

The photoemission process in its original concept is viewed as a single-particle probe –
two-electron photoemission has been studied only recently (as described in two chapters [30,
36] of this volume). A single electron is removed from its binding environment and its spec-
tral and angular distributions are recorded outside the material. Thus, two questions arise.
First, how are the many-body effects on the one-particle spectra isolated so as to yield the
simple and accustomed interpretation of one-electron photoexcitation? This asks for a quasi-
particle picture, which is the subject of many treatments of many-body theory. Photoemission
will directly reflect the distribution of those quasi-particles if the picture works at least in an
approximate manner. This is by far the most widespread motivation and application of the
technique. The second question is: what can be learned from photoemission about the many-
body behavior of the system? The one-electron spectra describe excitations, but these do not
necessarily have a quasi-particle-like character. Instead, several particles or even collective
modes may mix into the excitations and thus affect the entire photoemission process. Then of
course, the simple direct interpretation of spectra breaks down and one of the main advantages
of this spectroscopy seems to be lost.

However, excitations of the many-body system clearly can be revealed by photoemission,
as with any spectroscopy that couples to the excitation process. The angular-resolution ca-
pability of photoemission adds a valuable selection property typical for solid state systems.
Thus, it is the many-body excitation spectrum which is hidden in the photoelectron spectral
distribution. Investigations have made significant progress toward this goal, including anal-
yses of the many-body spectral density, of the Fermi-liquid type or the shape of the Fermi
surface [21,94], of the intrinsic and extrinsic inelastic losses by plasmon shake-offs [49], and
of magnetic excitations [55]. The momentum resolved gap in semiconductors hides many-
body effects, and is an experimental quantity that can be extremely carefully determined by
photoemission. Theoretical investigations have culminated in the quantitative evaluation of
the GW-approximation now most common to bandstructure calculations. [37, 59] Strongly
correlated systems present another challenging problem of many-body physics [60] where
spectroscopy has opened a new branch with two-electron photoemission, see [36].

Thus, the present development of photoemission increasingly requires the treatment of
many-body effects. For that reason, we here introduce the main ideas of many-body theory at
a relatively basic level, meant to offer non-specialists insight into the main concepts. A more
extensive treatment is available in many books. [24,61,83] Several chapters of this handbook
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will address in much greater detail several aspects that are critical for photoemission and
related techniques.

The importance of the many-body problem derives from the fact that almost any property
of a real physical system of particles is to some degree governed by the quantum mechanical
interactions between the particles themselves. Thus, the many-body problem is not necessarily
a branch of solid-state, nuclear or atomic physics. It deals with general methods applicable
to all many-body systems. The difficulty of solving the many-body problem is extreme, and
because of this not much progress was made for a long time. The simplest way to deal with
the many-body problem was simply to ignore it, i.e. to neglect the interactions between the
particles of the system (One-Body Approximation). It is surprising and mysterious how this
simple picture was able to produce good results nonetheless. An explanation such as ’many-
body corrections often arise according to alternating semiconvergent series where subsequent
terms tend to cancel, thus wisdom only keeps the lowest order’ sounds mysterious as well and
asks for examples and proof.

In a series of papers around 1956-57, it was shown that the methods of Quantum Field
Theory, already famous for its success in elementary particle physics, were able to provide
a powerful, systematic and unified way to attack the many-body problem. One of the most
important results emerging from this approach is a new simple picture of matter according
to which systems of interacting real particles are described in terms of approximately non-
interacting fictitious bodies, calledquasi-particles, andcollective excitations. To a large ex-
tent, the properties of quasi-particles and the description of the collective excitations can be
calculated by means of quantum-field-theoretical techniques pictorially assisted by the so-
called Feynman diagrams. Actually, this represents the most general and systematic access to
the many-body problem.

The discovery of the Hohenberg-Kohn theorem [56] has sparked a whole ”industry” of
bandstructure calculations for which photoemission has proved to be the most accurate tool
of experimental investigation. The theorem describes the exact ground state energy as a func-
tional of the electron density which is variationally exploited once this functional is known.
Various approximations to the latter have been developed with increasing accuracy. Further-
more, in contrast to the fact that only the ground state is covered by the theorem, excitation
energies are identified in an approximate way with the constraint parameters of the variational
equations, the Kohn-Sham equations [69]. The agreement with experiment widely confirms
this procedure indensity functional theory(DFT). Because of their importance, many-body
treatments can no longer be considered separately from DFT. It is well known [99] that the
Kohn-Sham equations can be regarded as a procedure to solve the exact Dyson equation for
Green functions with a suitable self-energy. Thus, the formulation of many-body theory with
Green functions embeds DFT in its most frequently applied environment.

The general development of many-body theory for solids proceeds via Green functions
and so does photoemission theory. Therefore, Green functions will be the basis of the fol-
lowing presentation. In Section 1.2.2, we will introduce Green functions in the context of the
one-particle Schrödinger equation. In Section 1.2.3, we will discuss elementary excitations
in systems of interacting particles. Section 1.2.4 will address the concept of the self-energy,
while Section 1.2.5 will consider independent particle states and related methods. Perturba-
tion expansions will be discussed in Section 1.2.6, and diagrams in many-body systems will
be presented in Section 1.2.7. Section 1.2.8 introduces the spectral representation, while Sec-
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tion 1.2.9 deals with the photocurrent.

1.2.2 Green functions and one-particle Schrödinger equation

Let us consider a single quantum mechanical particle with Schrödinger’s equation written in
Dirac’s notation as

(EbI � bH0)j i = bV j i (1.1)

Here bH0 is a Hamiltonian for which the eigenfunctions�n and the eigenvaluesEn (widehatI ,
identity operator) are known, whilebV is a

Such an equation can be solved provided that we know the inverse of the operator(E bI �bH0); namely the Green functionbG0 = (EbI � bH0)
�1 (we will often abbreviate ”Green func-

tion” to GF). In light of this, we observe that the operators(E bI � bH0) and bH0 share the same
eigenfunctions�n(r) since they commute, while the eigenvalues of the operator(E bI� bH0) are
shifted, equal toE �En. The Green function of the operator(E bI � bH0) is therefore brought
into the position representation,G0(r; r

0; E) =< rj bG0jr0 >, by expanding with respect to its
eigenfunction system

G0(r; r
0; E) =

X
n

�n(r)�
�

n(r
0)

E �En
(1.2)

Here we can appreciate a powerful feature of the Green function: by finding the values of the
parameterE for which the denominator of the GF vanishes, we can obtain the eigenenergies
of the operatorbH0. This result motivates the use of the GF formalism later on when dealing
with the much more complex problem of the interaction of a quantum mechanical particle
within an interacting-particle system. In particular, we will see later that in that case the GF
has poles at values of the parameterE equal to the excitation energies of the whole system.

By applying the GF operator we get from Eq. (1.1)

j i = j 0i+ bG0
bV j i (1.3)

wherej 0i is the solution of the associated homogeneous equation(E bI � bH0)j 0i = 0: By
successive approximations of the particular solutionbG0

bV j i through iteration of Eq. (1.3), it
is possible to express the general solution as

j i = j 0i+ bG0
bV j 0i+ bG0

bV bG0
bV j 0i+ � � � (1.4)

We can also consider the following problem: if we know the Green functionbG0 for the
operatorbH0, what is the GFG for the operatorbH0 + bV ? By definition,

bG(E) =
�
EbI � bH0 � bV ��1

Since
�
EbI � bH0 � bV � bG (E) = bI; we have�
EbI � bH0

� bG (E) = bI + bV bG (E) (1.5)



6 1 Overview of core and valence photoemission

and multiplying both sides bybG0(E), we obtainbG (E) = bG0(E) + bG0(E)bV bG(E) (1.6)

which is calledLippman-Schwinger equation. Projecting onto the position eigenstatesjri;
Eq. (1.3) and the Lippman-Schwinger equation are respectively written as

 (r) =  0(r) +

Z
G0(r; r

0)V (r0) (r0) dr0 (1.7)

G(r; r0; E) = G0(r; r
0; E) +

Z
G0(r; r

00; E)V (r00)G(r00; r0; E) dr00 (1.8)

Both these equations are integral equations which can be solved up to the desired order by
successive iterations. Both formulas find widespread application in multiple scattering theory.

Now we consider the time evolution of a single quantum mechanical particle with unper-
turbed HamiltonianbH0: Schrödinger’s equation in this case can be written as�

i~
@

@t
� bH0

�
j�(t)i = 0 (1.9)

Projecting onto the position eigenstates, the Green functionG 0(r; r
0; t; t0) of the operator

i~ @

@t
� bH0 satisfies the following differential equation

i~
@

@t
G0 (r; t; r

0; t0)�H0

�
r;
~

i
r
�
G0 (r; t; r

0; t0) = ~Æ (t� t0) Æ (r� r0) (1.10)

Equation (1.2) shows that the solutionG0(r; r
0; t; t0) of Eq. (1.10) is the Fourier transform of

the Green functionG0(r; r
0; E)

G0(r; t; r
0; t0) =

1

2�

Z
G0(r; r

0; E)e�
i
~
E(t�t0)dE (1.11)

where the zeros of the denominator of the Green functionG 0(r; r
0; E) are appropriately

avoided by suitable choice of an integration path in the complex plane. Equivalently, one
integrates on the real axis and moves the zeros off that axis by defining

G
r=a

0 (r; r0; E) =
X
n

�n(r)�
�

n(r
0)

E �En � iÆ
(1.12)

with Æ an infinitesimal positive quantity and the sign leading to a retarded (r) or advanced (a)
choice(+ or - sign,respectively). It is possible to close the contour of integration in the lower
half-plane ift > t0 and in the upper half-plane ift < t 0; so thatGr

0(r; t; r
0; t0) = 0 for t < t0

andGa
0(r; t; r

0; t0) = 0 for t > t0. The Green functionsGr=a

0 (r; t; r0; t0) are both solutions of
equation (1.10), but with different prescriptions for the boundary condition on the time axis.

Through Eq. (1.10) an interesting property of the Green function shows that, given an
arbitrary initial wave function�(r0; t0) at time t0, it is possible to write the solution of the
Schrödinger equation at a later timet as

�(r; t) = i

Z
Gr

0(r; t; r
0; t0)�(r0; t0)dr0 (1.13)
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as proved with help of Eq. (1.10) and the equal-time propertyiG
r=a

0 (r; t; r0; t) = Æ(r � r0).
For this reasonGr

0 is calledretarded propagator: Gr
0 “propagates” the wave function through

time. The conditionGr
0 = 0 for t < t0 ensures that values�(r0; t0) for times later thant

do not contribute to the determination of�(r; t): In this sense the Green functionG r
0 and the

correspondingadvancedGreen functionGa
0 embody the principle of causality.

Now that we have the solutions of the unperturbed Green function Eq. (1.10), we can
solve the problem of determining the time evolution for a quantum mechanical particle with
HamiltonianH0 and with a perturbing potentialbV (t) which can be time-dependent. In this
case the Schrödinger equation can be written as�

i~
@

@t
� bH0

�
j	(t)i = bV (t)j	(t)i (1.14)

The solution of this equation is obtained by applying the Green function operator on the RHS,
so that

	(r; t) = �(r; t) +
1

~

Z
G
r=a

0 (r; t; r0; t0)V (r0; t0)	(r0; t0)dr0dt0 (1.15)

where�(r; t) is the solution of the associated homogeneous Eq. (1.9) andG
r=a

0 (r; t; r0; t0)

is the unperturbed Green function which corresponds tobV = 0. The retarded version yields
a forward solution, i.e. � is the prescribed initial wave function before the potentialbV is
switched on, and the advanced version yields thebackwardsolution, i.e.� is the final wave
function afterbV has been switched off. Replacing in Eq. (1.10)bH0 by bH = bH0 + bV andG0

by the full Green functionG constitutes the differential equation forG and is equivalent to an
integral equation, namely

Gr=a(r; t; r0; t0) = G
r=a

0 (r; t; r0; t0)

+

Z
G
r=a

0 (r; t; r00; t00)V (r00; t00)Gr=a(r00; t00; r0; t0) dr00dt00
(1.16)

We notice that by Fourier transforming Eqs. (1.15) and (1.16) into the energy domain we get
Eqs. (1.7) and (1.8) in the case thatV does not depend on time.

When the particle propagator is expanded in a perturbation series by successive iteration
of Eq. (1.6), the structure of the terms can be complicated. The use of GF as propagators is a
powerful method to help visualizing the physical picture: we sketch this approach next.

The free propagation of the quantum mechanical particle (in the absence of interactions)
can be drawn as a straight line. The effects of the interactions of the particle due to an external
potentialV are symbolized by open circles with attached broken line, as in Fig. 1.2a. We
can now visualize the different orders of the interactions in the perturbation expansion of
the propagator as a series of scattering events caused by the potentialV . Each term in the
perturbation expansion is represented by a diagram, so that each of the lines and circles in the
diagrams has a definite factor associated with it. There is a one-to-one correspondence of each
diagram with each term occurring in expression (1.6), or, in other words, with each term of the
perturbation expansion of the propagator. The result of the infinite sum is the exact propagator
depicted by a double line, as in Fig. 1.2b. The first aim of a perturbation theory is to regard
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FIGURE

Figure 1.2: Graphical representation of Green function diagrams: a) Green function with zero, one, and
n insertions of the perturbing potential; b) graphical summation of the geometrical series up to infinite
order to getG

the series as a power expansion with respect to a small parameter which leads to a cut-off at
low order.

The perturbation series is sometimes evaluated by summing to infinite order over only a
subset of diagrams, that is, summing only over some terms in the perturbation expansion cor-
responding to certain types of diagrams. This is the so-calledpartial or selective summation.
The partial sum is usually evaluated by showing that it involves a convergent infinite series, or
that it is equivalent to an integral equation which has already been solved.

As an example, consider a quantum mechanical particle which is moving under the influ-
ence of the sum of two external potentialsVA andVB . If such an expansion were summed up
to second order according to ordinary perturbation theory, one would retain only five terms:
two linear terms (inVA andVB) and three quadratic terms (inV 2

A
, V 2

B
, andVAVB). If, on

the contrary, one of the perturbations cannot be considered small, it is not possible to apply
ordinary perturbation theory. For example, ifVA � VB , it is possible to consider only the
diagrams involvingVA, neglectingVB and resulting in the “partial” result

bG (E) = bG0(E) + bG0(E)(bVA + bVB) bG(E)
� bG0(E) + bG0(E)bVA bG0(E) + bG0(E)bVA bG0(E)bVA bG0(E) + � � �

= bG0(E) �
1X
n=0

�bVA bG0

�n
=

bG0(E)

1� bVA bG0

=
1bG�1

0 (E)� bVA (1.17)

It is interesting to note how this approximation and the summation are visualized in terms of
diagrams. In particular, the approximation consists in considering only the series pictured in
Fig. 1.2a, while Fig. 1.2b shows how the diagrams can be effectively used as a symbolic guide
to performing calculations, since they can be manipulated as if they were algebraic quantities.
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1.2.3 Elementary excitations in systems of interacting particles

The elementary excitations play a dominant role in the low temperature behavior of a solid,
up to room temperature for the electrons. Often, these excitations have quasi-particle prop-
erties in the sense that a group of several particles maintains its identity through the course
of time and obeys a certain type of statistics, being e.g. of Fermi or Bose character. These
quasi-particles have energy and momentum and can thus be treated much like normal particles
in theory and experiment. Therefore, it is convenient to discriminate between an excitation
which concerns a finite number of particles, such as an electron with its polarization cloud,
and an excitation where all the particles are simultaneously involved, so-calledcollectiveex-
citations, such as phonons, spin waves, or current-carrying states of superconductivity. Many
intermediate forms exist and can be imagined.

For a homogeneous non-interacting system, the energyE versus momentum dispersion
relation of a single particle with momentump and massm is quadratic, i.e.E(p) = p 2=2m.
When a real particle moves through a system of interacting particles, its motion is considerably
modified. In fact, we can imagine that the real particle becomes surrounded by a cloud of
other particles in the system. The system consisting of the real particle plus the cloud of other
particles around it is calledquasi-particle, or synonymouslydressed, clothedor renormalized
particle. The properties of the quasi-particles are different from those of the real particles:
quasi-particles have an effective mass and a lifetime.

Since the real particle is screened by the other particles, quasi-particles interact only
weakly with one another. This is why the formulation of the quasi-particle concept is so
useful in studying many body systems: systems of strongly interacting real particles may be
regarded as composed of independently and/or weakly interacting quasi-particles.

The quasi-particles are what we see when we probe such systems, and they can behave
quite differently from the free particles. For example, the energy versus momentum depen-
dence of a quasi-particle can be very different from that of a free particle. Such behavior is
what angle resolved photoemission is in fact supposed to elucidate.

We can define quasi-particles aseffective single-particle states, meaning that they act like
free particles with a renormalized energy� 0

k
replacing the energy�k of the bare particle, and a

lifetime �k: In an approximate manner, the finite lifetime of a single-particle state is described
by regarding the energy as a complex quantity. By doing so, it is possible to account for the
exponential decay in time of the amplitude of the wave function, thus describing the fact that
the scattering due to a potential tends to knock a particle out of its single particle state. Thus,
we consider the energy with real part equal to� 0

k
and imaginary part equal to�1=�k. In fact,

the eigenfunction of a free particle with momentum~k can be written as� k(t) = �ke
�i

�0
k
~
t.

When interactions are turned on, the energy changes to� 0
k

and the particle starts to decay out
of the single particle statek , so that for a quasi-particle the wave function can be written as

�0
k
(t) = �ke

�i

�
�0
k
~
�i

1
�k

�
t
= �ke

�i
�0
k
~
te�t=�k (1.18)

showing the exponential decay of the state with rate1
�k

.
The quasi-particles are more or less well defined, depending on the value of the decay

time. Schemes like Hartree or Hartree-Fock, which rely on the solution of a one-particle-like
Schrödinger equation, local or nonlocal, with hermitean Hamiltonian, conserve the particle
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number and thus also the identity of a single particle. The Kohn-Sham eigenvalues of density
functional theory also exhibit definite single-particle properties, even though this approach is
questionable because it describes only the ground state; however, it is empirically in wide use.
An important criterion for the validity of the notion of a quasi-particle is that the lifetime of the
quasi-particles has to be longer than the time required to detect the quasi-particle state. Since
the many-body interactions scatter the particle out of its single-particle state, a measurement of
the lifetime of the state is very useful because it gives insight into the interaction mechanisms.

At the other end of the scale of fictitious particles in a many-body system are thecol-
lective modesor collective excitations. These can be defined as the quanta associated with
collective wave-like motion of the system as a whole. Examples of collective excitations in-
clude phonons, plasmons and magnons. Collective excitations have particle-like qualities,
such as complex energies with finite lifetime. Unlike quasi-particles, however, they are not
described in a localized picture.

An important aspect of many-body systems is that of the correlations in particle positions
brought about by their mutual interaction, giving rise to coherence effects. Such correlations
frequently take the form of screening, that is, the alteration in the effective interaction of a pair
of particles brought about by the remaining particles in the system. In fact, the particle in a
system cannot distinguish between an external perturbation and an internal potential produced
by the response to that perturbation from the rest of the system. A particle reacts not to
the external field but to the total field, including the response of all the other particles. The
result of allowing the rest of the system to adapt itself is to reduce drastically the effective
potential. For example, a given electron in a dense electron gas acts to polarize its immediate
surroundings: it pushes other electrons away until its associated screening cloud possesses a
charge nearly equal (and opposite) to its own. The quasi-particles (electrons plus screening
clouds) interact via an effective short-range interaction of the order of the interparticle spacing,
in contrast to the original Coulomb interaction which in principle has infinite range. One of
the first big successes of many-body theory was the decomposition of the Coulomb excitations
into extended plasma waves and short-ranged screening clouds, the former corresponding to
collective excitations and the latter to quasi-particles. [12,77] Charges are locally balanced and
the remaining long range interaction (q = 2�=�! 0) is connected with wave-like deviations
from this balanced charge equilibrium at significantly higher energies corresponding to the
classical plasma frequency.

It should be noted that each bare particle is simultaneously the core of a quasi-particle and
a transient member of the cloud of several other quasi-particles. Therefore, if one wants to
describe a many-body system in terms of quasi-particles, caution is necessary because each
particle will be counted more than once. For this reason, the quasi-particle concept is valid
provided that one talks about a few quasi-particles at a time (few compared to the total number
of particles in the system).

It is convenient to define quasi-particles in terms of an experiment in which one removes
or adds a particle in a system, and observes the behavior of this extra particle (or hole) as it
moves through the system. This picture is closely related to photoemission, direct and inverse,
respectively. It is automatically accounted for in the formal definition of the Green function
for a many-body system.
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1.2.4 The self-energy

At this point it is natural to ask how we can describe the GF propagator when we consider
the many-body interactions which are present in a system of particles. A useful aspect of
the one-particle many-body Green function is that it allows retaining a one-particle picture
while considering many-body systems. In fact, following Dyson, it is possible to describe
the many-body interactions of a single particle by introducing an energy dependent effective
potential calledself-energyb�(E). As the name suggests, the self-energy includes all the
particle interaction effects. In other words, the particles of the system are perturbed by the
incoming particle in such a way that their motion follows (or “is correlated with”) the motion
of the incoming particle itself. The incoming particle affects the many-body system, which
in turn acts back on the particle, altering its energy. The interactions between the incoming
particle and the system take place in a dynamic rather than in a static way, so that the self-
energy describes the dynamics of these interactions, i.e. the time dependence of the response
of particle motion correlated with the incoming particle. For this reason the self-energy is
an external effective potential which is time dependent, and hence energy dependent upon
Fourier transforming.

In a crude way, the self-energy might be introduced by the following equation reminiscent
of Eq. (1.1) with the potentialV replaced by the self-energyb��

EbI � bH0

�
j	i = b� (E) j	i (1.19)

where bH0 is a Hamiltonian whose eigenvalues and eigenfunctions are well known, typically
taken to be of one-particle form. According to the derivation following Eq. (1.3), the for-
mal solution of Eq. (1.19) is obtained through the corresponding GF which is determined
by means of the Lippman-Schwinger equation, now called (when the self-energy is present)
Dyson equation

bG (E) = bG0 (E) + bG0 (E) b� (E) bG (E) (1.20)

The Dyson equation can be solved formally

bG (E) =
1bG�1

0 (E)� b� (E)
(1.21)

This shows how the poles of the GF are moved in energy byb� from those of the non interacting
GF bG0, thus describing the motion of the particle through the system as a combination of its
free motion and all of its interactions with the rest of the system, expressed by the self-energy.
Equation (1.20) is depicted in Fig. 1.3, where the double lines are associated with the GFbG (E) ; while single lines denote the free propagatorbG0 (E).

The solution of Dyson’s equation is symbolic, meaning that it is possible if we know
how to calculate the self-energyb�: This task, however, is impossible in full generality. It
is possible to calculate it by means of approximations of the many-body interactions which
are present in the system. A qualitative look at the methods which allow performing this
many-body perturbation expansion will be the object of the next paragraphs. The method of
second quantizationor occupation number formalismhistorically facilitated the development
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FIGURE

Figure 1.3: Self-energy: a) multiple insertions of self-energy to infinite order forG written in b) by
summing them up in Dyson’s equation.

significantly. The reason for this is twofold. First, this formalism allows handling systems with
variable numbers of particles. This capability can be appreciated if we think about the fact
that we will be able to describe test particles which are added to or removed from the system,
as embodied in the definition of the GF. As another example, we can formally express the
particle-hole approach, where the number of particles and holes is variable. Furthermore, the
operators already describe (through the commutation relations that they satisfy) the symmetry
properties of Fermi and Bose systems, so that we do not have to worry about keeping the wave
functions properly symmetrized, the result being a simplification and a more compact form.

1.2.5 Independent particle states and related methods

It is necessary to use determinantal wavefunctions even for the simplest problems that satisfy
the quantum statistics of fermions: such wavefunctions are unwieldy expressions, so it is
desirable to find a formalism that is easier to manipulate. The required basic information is
how many particles are in the single-particle state�, how many in state�, and so on. In
Dirac’s notation:

j	i = jn�; n�; : : : ; n� ; : : :i (1.22)

In thisnumber representationone defines theconstructionand destructionoperators,bc y andbc respectively, to construct a state like Eq. (1.22). They increase and decrease, resp., by one
the number of particles in a specified one-particle state�; �; : : :. The symmetry properties of
the system are implicitly contained in the commutation relations obeyed by these operators,
viz.

bcy�bcy� = �bcy�bcy� or
�bcy�;bcy��

�
= 0 (1.23)

where we have the anticommutation relation (lower sign) for fermions and the commuta-
tion relation (upper sign) for bosons. An independent fermion state is written according
to Eq. (1.22) as

j	i = (bc+
�
)n�(bc+

�
)n� � � � (bc+

�
)n� � � � j0i (1.24)
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by adding particles to the vacuum statej0i.
The criterion according to which we write the operator in second quantization is that when

operating between two states it gives the same matrix elements as given before in the more
classical notation, between two many-particle wavefunctions. As an example, let us consider
an operator like

bO =

NX
i=1

bOi

�
ri;

~

i
ri

�
(1.25)

along with its matrix element evaluated between two independent particle states differing by
one single-particle wavefunction

h�j bOj�i = Z
d3r ���(r)O

�
r;
~

i
r
�
��(r) (1.26)

Such operators are calledone-body operatorssince they are sums of operators each of which
acts separately on one particle. An example of such an operator is the kinetic energy operator.
In second quantization formalism, it can be shown that the expression for such operators is
given by

bO =
X
��

h�j bOj�ibcy
�
bc� (1.27)

In an analogous way a two-body operator is represented by a product of two destruction and
two creation operators and a corresponding matrix element.

Consider again a state in the form of Eq. (1.22) and disregard mathematical subtleties
concerning the difference between discrete and continuous states. If we take as the single-
particle states�, �, etc. the eigenstates of the position operatorbr1; br2; : : : ;bri, thennri gives
the number of particles in the single-particle stateÆ(r � r i), i.e., nri particles at the point
ri. Similarly, the creation and destruction operators becomebc y

ri
andbcri , which respectively

create and destroy a particle atri. These two operators are usually calledfield operators
and are denoted byb y(ri) and b (ri), respectively. The exact formal definition of the field
operators is by means of linear combination of the creation and destruction operators, namely

b (ri) =X
k

bck k(ri)
with a suitable set of one-particle states k(r). From the commutation relations satisfied by
the operatorsbcy andbc it is easy to show the respective relations for the field operators. The
expressions for the one-body and two-body operators in terms of the field operators becomeZ

d3r b y(r)O(r;p) b (r) (1.28)

ZZ
d3r1d

3r2 b y(r1) b y(r2)O(r1;p1; r2;p2) b (r1) b (r2)
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where the momentump stands for the correspondingnabla(r) expression and applies to its
right.

A convenient starting point for a many-body calculation often can be taken from suitable
one-body states. The Hartree-Fock (HF) method is a well known example. A determinantal
ansatz of single-particle functions is used to minimize the variational energy and thereby fix
these functions. The one-body potential might for instance be given by the nuclei’s potential
Uion(r) = � Ze

2

4��0

P
R

1
jr�Rj

and the two-body potential by the electron-electron Coulomb
interaction. The ground state energyE0 within the HF approximation, summed over electronic
states, is given by

E0 = h	j bH j	i = NX
a

hajbhjai+ 1

2

NX
a;b

habjjabi (1.29)

where we denoted withbh the one-electron part of the Hamiltonian, that is, the kinetic energy
and the one-body interaction operators. We also have defined

habjjabi = habjbV jabi � habjbV jbai (1.30)

The first term on the right hand side of Eq. (1.30) is the self-consistent field, while the second
one is the exchange term. The HF equations are variationally obtained from Eq. (1.29) by
varying the one-particle states involved in the matrix elements. The resulting one-particle
states are then occupied according to their corresponding eigenvalues up to a maximum value,
the Fermi energy, such that it exhausts the particle number. It is synonymous with the chemical
potential in the case of a metal. The Hartree-Fock eigenvalues�k, referring to the chemical
potential�, are given by

�k + � = hkjbhjki+ NX
b

hkbjjkbi (1.31)

The split-off of the chemical potential from the one-particle energies is common practice in
many-body statistical theory and is adopted here, too. At first, these eigenvalues arise as
Lagrangian multipliers for norm conservation of the wave function, as in Ritz’s variational
principle. These eigenvalues get the meaning of one-particle excitation energies known as
Koopman’s theorem. To this end, one subtracts from Eq. (1.29) the corresponding expression
with one particle missing and obtains the ionization potentialIP , i.e. the energy required
to remove from theN -particle ground state a particle occupying a single-particle state. In
particular, we have

EN�1
k

� EN

0 = �hkjbhjki � NX
b

hkbjjkbi = �(�k + �) =: IP (k) (1.32)

Therefore, we see that, given anN -particle Hartree-Fock ground state, the energy required to
remove a particle in a single-particle statejki is ��k. In a similar way, we can consider the
process of adding a particle in a single-particle statejri to the ground state of theN -particle
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system. The assumption is that the remaining single particle states remain unchanged. The
energy required for this process, the electron affinityEA; is then given by

EN+1
r � EN

0 = hrjbhjri + NX
b

hrbjjrbi = (�r + �) =: EA(r) (1.33)

The sum of both expressions represents the excitation energy keeping the number of electrons
constant. We note that the ionization potential and the affinity usually are positive quantities
with suitable choice of the one-particle energy zero.

To solve the Hartree-Fock equations for a solid is quite cumbersome and the validity of
the results is questionable. For example, the gap in insulators and semiconductors is some-
times overestimated by well over 100%. The reason is found in the exchange energy which is
negative with an absolute value that is too high: this is due to neglect of the Coulomb hole, an
electron’s neighborhood of charge density reduced by screening. Thanks to the development
of the Hohenberg-Kohn theorem, density functional theory (DFT) has become very successful
and has almost entirely replaced all other single-particle-like methods. Various levels of ac-
curacy and variants of the density functional are used. Details can be found elsewhere in this
handbook [37, 70]. In the first version of the theory, gaps are underestimated by some 10%.
This shortcoming is attributed to the failure of the ground state theory to describe excitations.
Koopman’s theorem does not hold, contrary to Hartree-Fock. Electron-electron interactions
are partly present in the formalism, depending on the choice of the density functional, but
its more or less local form does scarcely account for the neighboring electron configuration
during excitation. Thus, transferring from a bonding to an antibonding state expands the
charge which interacts with and changes the neighborhood via electrostatics and exchange,
by Coulomb hole and screened exchange contributions. Improvements with respect tocorre-
lation, i.e. the difference between the true many-body state and the Hartree-Fock state, have
been developed. Of course, they generally aim to take many-body corrections into account.

In DFT, the energy

E[n] = T [n] +

Z
drV (r)n(r) +

e2

8��0

Z
drdr0

n(r)n(r0)

jr� r0j
+Exc[n] (1.34)

has to be minimized under the constraint of particle number conservation with respect to the
densityn. Square brackets denote functional dependence. The exchange-correlation func-
tional Exc[n] is adapted in an approximate way from its homogeneous electron-gas form,
thereby replacing the constant densityn0 by the true densityn. The second term on the right
of Eq. (1.34) includes the electron-nucleon potential and, if present, an external force. The
third term is the classical electrostatic electron-electron interaction. The kinetic energyT [n]
can be chosen such that a set of Schrödinger-like equations arises as variational equations, the
so-calledKohn-Sham equations�

�
~
2

2m
r2 + veff(r)

�
�k(r) = �k�k(r) (1.35)

with an effective one-body potential

veff(r) = V (r) +
e2

4��0

Z
dr0

n(r0)

jr� r0j
+
ÆExc[n]

Æn(r)
(1.36)
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The density is given by a sum over occupied states

n(r) =
X
k

j�k(r)j2 (1.37)

which can be solved iteratively to self-consistency together with Eq. (1.35).

1.2.6 Perturbation expansion

To develop a suitable perturbation approach, let us start with the formal definition of theone-
particle many-body time-ordered Green functionG for fermions:

G (k1; t1; k2; t2) = G+ (k1; t1; k2; t2) = �i
D
	N
0

���ck1 (t1) cyk2 (t2)���	N
0

E
; t1 > t2

G� (k1; t1; k2; t2) = +i
D
	N
0

���cyk2 (t2) ck1 (t1)���	N
0

E
; t1 < t2

(1.38)

Herecy
k
(t) andck (t) = e

i
~
bHtcke

�
i
~
bHt are, respectively, the creation and destruction oper-

ators at timet in a single-particle statek. The time dependence used here is attributed to
the so-calledHeisenberg representation. By k we denote a set of quantum numbers like, for
example, momentumk and spin�. An equation analogous to Eq. (1.10) can be derived for
G by differentiating Eq. (1.38) with respect to time but with the essential difference that, be-
sides theH0 �G term in Eq. (1.10), expectation values over more than two particle operators
arise, owing to the number of fourc-operators in the interaction part ofH . They cannot be
decomposed into a product of known quantities factoring outG in a closed form. Instead, by
definition the self-energy� is formally introduced according to Eq. (1.20), while tools must
still be developed to determine� explicitly. In the single-particle case, however, Eq. (1.38)
definesG as obeying Eq. (1.10). The functionsG� are also defined by Eq. (1.38), postu-
lating them to be zero outside the ascribed time interval. They merely serve here for short
hand notation. They are different from the retarded and advanced functions which are used
in Eq. (1.12) for the one-particle case. The latter can be obtained byG r = G � G< and
Ga = G �G>, respectively, through the quantitiesG> (G<) which equalG+ (G�) but ex-
tend the specific definition (1.38) to the whole time domain. Let us now take a look at the
physical interpretation of the above defined quantities.

An inspection of Eq. (1.38) suggests consideringG+ written asG+ = �i hBjAi ; where

jAi = c
y

k2
(t2)

��	N
0

�
andhBj = jBiy =

�
c
y

k1
(t1)

��	N
0

��y
: Then the many-body GFG+

describes the following sequence of events. Initially, the system is in its ground state
��	N

0

�
:

A particle is created att2 in a single-particle state (sps)k2. Later on, at timet1, the system
has the added particle in the spsk1. G+ is proportional to the overlap of these two states,
i.e. the probability amplitude that the system at timet1, after a particle has been introduced
at timet2 in the spsk2, has the added particle in a spsk1, which corresponds to the physical
interpretation given already. In an analogous way one obtainsG�, the propagator of a hole.
When one wants to calculate the GF of Eq. (1.38), a big challenge lies in the fact that

��	N
0

�
is

the ground state of the interactingN -particle system, which is impossible to calculate in full
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generality. In fact, it would be more convenient to calculate the matrix elements appearing
in Eq. (1.38) between the states corresponding to the ground state of the non-interactingN -
particle system. In principle, the idea is to start off with a non-interacting system, “switch on”
the interactions and wait until the new interacting stationary state has been achieved.

It is possible to arrive at a formula which allows calculating the propagator by successive
approximations. To accomplish this, one moves to the interaction picture. So far we have
worked within the Schrödinger picture, namely by using the Schrödinger equation as given
by Eq. (1.9), with bH instead of bH0. To solve it approximately in terms of a perturbation
expansion with respect to a small quantity one has to split off a relatively small partbV of the
total HamiltonianbH = bH0+ bV and expand. The method is again not limited to simply cutting
off the expansion at a certain order, but it allows partial summation over certain subsets which
appear to yield dominant contributions to the exact result. This becomes especially clear if
single terms diverge at any order for special values of the parameters involved. It indicates
an instability which would also appear in the exact expression as some kind of singularity
at the radius of convergence given by the special parameter values. The partial summation
and also the exact result may even hide this singularity which artificially appears in the single
expansion terms, because the derivatives may exist up to some order thereby smoothing the
parameter dependence of the summed result. Think e.g. of a geometrical series of terms each
diverging at the same special parameter value where, however, the series converges to zero
and has by continuation a convergence radius which covers that parameter value.

Therefore, one has to design an expansion scheme such that a power series with respect tobV is generated, no matter whether it converges or not. This needs some formal manipulations
of the Schrödinger equation where the known time evolution of the unperturbed Hamilto-
nian bH0 is taken into account from the beginning: the correction to this time dependence is
formulated as a new evolution equation in the so-calledinteraction representation. In this
representation, the wavefunction of the systemj (t)i

I
is transformed according to

j (t)i
I
= e

i
~
bH0t j (t)i (1.39)

The time evolution of the statesj (t)i
I

and operators in the interaction representation are
given by

i~
@

@t
j (t)i

I
= bVI (t) j (t)i

I
(1.40)

bOI (t) = e
i
~
bH0t bOe� i

~
bH0t (1.41)

Thus, in the interaction representation, the interaction wavefunctionj (t)i
I

satisfies a Schrö-
dinger equation with the HamiltonianbVI , while all operators carry now an explicit time de-
pendence defined by the non-interacting HamiltonianbH0. We can now determine how the
functionsj (t)i

I
evolve with time in the interaction representation. Instead of the wave func-

tion we will use the Green function. We will omit the indexI in the following, understanding
all time dependence taken in the interaction representation.

The definition of the propagator Eq. (1.38) contains as unknown quantities the exact
ground state and the time dependence of the Fermi operators through the full Hamiltonian.
The transition to the interaction picture splits off the perturbation in a way similar to the pro-
cedure in the wave equation, see Eq. (1.40). The time dependence is then composed of the bare
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Hamiltonian viabH0 and a complicated correction which involvesbV . The latter is expanded in
terms ofbV . The unknown ground state is dealt with in an analogous manner and reduced to
the corresponding ground state of the unperturbed system by means of the adiabatic hypothe-
sis. It consists in assuming that the interacting ground state is obtained from the bare ground
state by switching on the interaction infinitely slowly, i.e. adiabatically or without change of
energy. It turns out that a very convenient representation of the many terms of the different
series occurs, through the time ordering which is denoted bybT . All factors appearing after
that operator have to be ordered in an ascending time sequence from right to left. Thus, one
gets an expression for the GF in the form of a perturbation expansion, with the advantage that
the matrix elements have to be evaluated between unperturbed ground state vectors of a many-

body system. Such matrix elements consist of terms likeh�0j bT n bA1::: bAno j�0i ; where the

operatorsbAi are creation or destruction operators for particle and holes in the interaction rep-
resentation. The propagator of Eq. (1.38) then reads

G (k1; t1; k2; t2) = �i
1X
n=0

1

n!
(�

i

~
)n

1Z
�1

dt01

1Z
�1

dt02 : : :

1Z
�1

dt0n (1.42)

D
�0

��� bT nbV (t01)bV (t02) : : : bV (t0n)bck1 (t1)bcyk2 (t2)o����0

EC
The matrix elements are evaluated by usingWick’s theoremwhich states that such an expecta-
tion value over a product of creation and destruction operators can be decomposed into a prod-
uct of expectation values of pairs each containing one creation and one destruction operator,
i.e. the unperturbed propagators arise. Take Eq. (1.38), replace the true state	 0 by the unper-
turbed state�0, and use for the time dependence of the operators the unperturbed HamiltonianbH0. A detailed explanation of the mathematics which allow calculating the matrix elements
in a systematic way are beyond the scope of this introduction , see e.g. references [33, 80].
We want to stress, however, that to each term in the series expansion corresponds a proper
diagram. In particular, some of the diagrams can be divided into different unconnected pieces,
and for this reason they are calleddisconnected diagrams. It is possible to show that only
connected or linked diagrams must be taken into account in the evaluation of the propagator,
according to the so-calledlinked cluster theorem. That is indicated by the superscriptC.

There is an alternative method to derive the perturbation expansion which is entirely equiv-
alent to the above, and also frequently used. The association of Eq. (1.38) with the notion of a
Green function as developed in the foregoing paragraphs is more suggestive in that procedure.
Briefly, the method uses an equation of motion for the quantity (1.38) obtained from the time
dependence of the creation and destruction operators in the Heisenberg representation. A four-
operator product appears on the right hand side of this equation within the expectation value
bracket. The time evolution of that higher order Green function yields in turn successively
higher orders, leading to a hierarchy of equations with an increasing number of operators in
the expectation value for the higher-order Green functions. The equation of motion has a
structure formally equal to Eq. (1.10), thus suggesting the notion of a Green function. The
diagrammatic expansion also follows the rules given below. However, the reasoning for ap-
proximations differs occasionally. What appears as a summing up of a subseries of the whole
expansion in the language of diagrams is a decoupling or factorization of a higher-order Green
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function into lower-order ones.

1.2.7 Diagrams in many-body systems

We already introduced some diagrams in the case of a single quantum mechanical particle and
introduced the concepts of selective summation. Here we extend the treatment to a system
of N particles. The unperturbed HamiltonianbH0 =

P
n
< njhjn > bcy

n
bcn, is assumed

diagonal in the single particle states, say of the one-particle potential of a solid. As< 	N
0 j

and j	N
0 > in Eq. (1.38) are the same states (fully occupied up to the Fermi surface),G 0

is diagonal in the configuration indexn, as well. We now focus on a two-body particle-
particle interaction. In second quantization the interaction terms have the form of the two-
body operatorbVI = 1

2

P
k;l;m;n

hkljV jmnibcy
k
bcy
l
bcnbcm, where the matrix elementhkljV jmni

involves four single-particle states. Such a matrix element describes the interaction between
two particles or holes which, starting as single-particle states�m and�n, collide and scatter
into the single-particle states�k and�l, respectively. This expression forbVI has to be inserted
in Eq. (1.42). Applying Wick’s theorem as indicated will yield a sum of products of bare
propagatorsG0 (l2; t2; l1; t1) which are characterized by two time and two configurational
indices.

The book-keeping of the whole series expansion is now illustrated by diagrams and rules
governing their construction, their manifold, and the quantitative expression in Eq. (1.42)
associated with them. Instead of Fourier transforming to energies, the original time variables
are used here. The propagatorG0 is drawn as a line with the endpoints1 and2 whose notation
comprises occasionally both space and time variables, cf. Fig. (1.4). Each of these points is
connected through the indices with an interaction matrix element, with the exception of the
outer indices belonging to the left hand side of Eq. (1.42). The matrix element is plotted as a
wavy line. It actually has four endpoints (connections) according to the indices ofhkljV jmni.
They are grouped pairwise such that(k;m) and(l; n) are at opposite ends of the wavy line,
with (m;n) on one side of the line and(k; l) on the other. One can think of the pair(k;m) as
belonging to one particle and(l; n) to the other. For example, two matrix elements appear in
Fig. (1.4c) associated with a wavy line, the left one with indiceshk1mjV jkli and the right one
with hkljV jk2mi. The connecting points are called vertices and their indices are summed or
integrated over, depending on whether the index labels discrete configurations or a continuous
time, respectively. There is only one time associated with each wavy line. The perturbation
series for the single particle propagators are built as the sum of all possible different connected
diagrams which can be constructed with the basic two-body forces interaction diagram. Such
diagrams illustrate how the many body interactions which take place in the system modify the
single particle or hole propagators. There is a one to one correspondence between each of
these diagrams and each of the terms in the perturbation series expansion. Besides the general
case where one does not distinguish between different orders of time, diagrams can be ordered
by time: this involves the explicit notation giving the time relation in the propagator, i.e., the
notation with particle and hole propagators. Both pictures are valuable and used below.

We will limit our attention to some of the main diagrams which are obtained in the lowest
order of approximation for the particular case of the single particle propagator. When ordered
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by time a particle diagram is drawn such that the particle enters at the start of a line, undergoes
all the possible interactions with the background and then leaves at the end of a line. There
are only two first order diagrams, corresponding ton = 1 in Eq. (1.42). The first diagram,
shown in Fig. (1.4a), describes the direct interaction of the particle with any particlen of the
background. One line leaves and enters at the same point, a so-called loop. It means equal
times in that propagator.

FIGURE

Figure 1.4: First order a) and b), second order c) Coulomb interaction graphs, instead of space momen-
tum variables are denoted in b) and c); only GF indices are shown, matrix elements are e.g.h1njV j2ni,
hk1ljV jlk2i in a), b), resp..

A propagator associated with a single loop represents the particle/hole occupation num-
ber. If the configuration index denotes the momentum of a homogeneous system and if the
bare ground state is the free-electron Fermi sphere, then the vertex of the loop has two equal
momentum indices, i.e. momentum does not change at one end of the interaction. If momen-
tum is conserved, as e.g. in the Coulomb interaction, then also at the other end no change
of momentum can occur. The second process, shown in Fig. (1.4b), corresponds to a particle
which undergoesexchange scatteringagainst the background particles.

In second order, which means that there are two interactions, the particle propagator can
be affected by several scattering processes. A well known and very important type of diagram
is shown in Fig. (1.4c), and corresponds to the polarization of the background particles due to
the perturbation induced by the incoming particle. Initially the particle (k 1) propagates freely,
and then it interacts with the background particles by creating a particle-hole pair (lm). The
original particle (nowk) and the created particle-hole pair propagate free from interactions,
until a new scattering interaction with the original particle annihilates the pair, so that the
background returns to its original ground state. This diagram is a non-trivial example of self-
energy diagrams. Such diagrams must be considered as an indirect interaction of the particle
via the medium with itself. The particle creates a disturbance in the system (interaction) which
is then reabsorbed by the particle as it propagates.

We have already pointed out how Dyson’s Eq. (1.20) changes the problem of calculating
the single particle GF into one of calculating the self-energy. Thus, rather than calculating
the whole propagator series, the solution of the problem can be attempted by calculating the
self-energy contribution starting directly from the diagrams, and then converting them into an
analytical form.
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We now illustrate qualitatively the use of Feynman’s diagrams in expanding the self-
energy. This process is the selective or partial summation, which is equivalent to performing
an infinite summation on a series of terms which may even be divergent: in an extreme case,
this can produce a new series in which all terms are finite. The original perturbation series
usually are not convergent even if the single terms are finite, mostly they are only semicon-
vergent (asymptotically convergent). Thus they give only a formal representation of the exact
expression. One tries to remedy both possible defects, lack of convergence and infinite values
of individual terms of the series, by partial summation, which may involve reordering, can-
cellation of individual terms or cancellation of an infinite number of terms. Not only is the
summation performed on self-energy diagrams, but also the interactions themselves are renor-
malized. This is equivalent to considering effective interactions rather than bare ones. The
physical meaning of the effective interactions is that the bare interaction virtually polarizes
the medium, and the polarization cloud in turn shields the bare interaction converting it to the
much weaker effective interaction. The screened interaction between two points consists of a
large number of excitations involving many electron-hole pairs, thus involving the system as
a whole.

The diagrams describing the terms in the perturbation expansion can be divided into two
classes: reducible (improper) and irreducible (proper). Reducible diagrams can be divided
into two by cutting one internal fermion line as e.g. the last two diagrams in Fig. 1.3a, while
irreducible ones cannot, as those in Fig. 1.4.

First we attempt to calculate the self-energy. We define as a self-energy part any diagram
without external lines, which can be inserted into a particle or hole line. The solution of the
Dyson equation is exact, in the sense that all the diagrams have been counted, proper ones and
their repetitions. The repetitions appear through the iteration of the Dyson equation; the proper
diagrams are to be contained already in the self-energy. Thus, the self-energy must not contain
improper diagrams. In principal, it is possible to sum over all repetitions of all irreducible self-
energy parts. We have actually shown this process already in Fig. 1.3a. We have only summed
over the repeated proper parts, but we still need to sum over the proper parts themselves. This
is impossible in full generality, and is normally done with approximations. Understanding
which diagrams have more weight in the self-energy expansion is actually challenging: such
choice in fact reflects the approximations which are used to describe the system. In other
words, choosing the right diagrams to sum over when expanding the self-energy is equivalent
to outline the most important physical interactions which take place in a many-body system.

As we associate the full propagators to the straight lines instead of justG+ orG�, we have
a particle line for the positive time difference, and a hole line otherwise. By suppressing the
time order, the drawing of the diagrams can be greatly reduced to their topological equivalence
and without any time arrows.

Now we look at the interactions. We define as proper or irreducible polarization part any
diagram without external interaction lines which can be inserted into an interaction line and
which cannot be split into two by cutting an internal interaction line. When we include all
the possible polarization parts, we get the fully screened interactions, as diagrammatically
sketched in Fig. 1.5. This procedure is called the dressing or renormalization of the inter-
action. As an effect of the renormalization, no interaction lines have inserted polarization
parts and all interaction lines are dressed. Moreover, as shown in Fig. 1.5b, the interactions
obey an equation with the same structure as Dyson’s equation, obtained by summing the bare
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interaction lines with all the possible insertions of proper polarization parts.

FIGURE

Figure 1.5: Renormalization of interaction by polarization diagrams: a) contributions to polarization,
first two graphs are irreducible, third is reducible decomposing into two irreducible ones by cutting the
interaction right of the left bubble and has to be removed from a) because it automatically appears in b);
b) analog of Dyson equation for interaction.

So far we have seen that the series for the propagator can be expressed in terms of the
proper self-energy� which can in turn be expressed in terms of the effective interactions. As
in Fig. 1.3 we also dress propagator lines. In fact, the self-energy� is obtained by summing
over all diagrams in which the propagator lines already contain the self-energy. This produces
a series in which no propagator lines can be grouped into self-energy parts and all of them
have been replaced by clothed propagators.

A vertex is defined as any point in a diagram determined by the intersection of two fermion
lines and one interaction line. Then, the vertex part is any diagram without external lines which
can be inserted in place of a vertex. The summation for the vertex part can be decomposed in a
procedure analogous to renormalization into an irreducible part and its repetition. The lowest
order vertex is just a point with three plug-ins, one for the interaction and two for fermions.
Any approximation beyond the bare point is called vertex correction.

Altogether, it would be the aim to renormalize simultaneously the interactions, the prop-
agators and the vertices. In the literature the double lines are often omitted, and it is stated
that both the interactions and the propagator lines have been renormalized. The whole proce-
dure sketched above produces a large simplification of the book-keeping, illustrating the series
expansion of Eq. (1.42).

1.2.8 Spectral representation

We now show how the Green functionsG� can be expressed in a form which is related to the
excitation spectrum of the full Hamiltonian.

By inserting in the definition of the Green function, Eq. (1.38), the unity operatorI =P
n;M

��	M
n

� 

	M
n

�� (here,n denotes excited states of anM -particle system), we have with
t1 = t, t2 = 0 andk1 = k2 = k

G+(k; t) = �i�(t)
X
n

jh	N+1
n jbcy

k
j	N

0 ij
2e�

i
~
(EN+1

n �E
N
0 )t (1.43)
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After Fourier transforming, we get an expression very similar to the one-particle case treated
before, namely

G+(k;E) =
X
n

jh	N+1
n jbcy

k
j	N

0 ij2

E � (EN+1
n �EN

0 ) + iÆ
(1.44)

Similarly, we getG� with M = N � 1 for hole creation, with negative imaginary part in the
denominator, and with opposite sign of the energies within the parentheses of the denominator.
As already pointed out earlier, the poles of the single particle propagator occur at the difference
between the exact energy of the excited states of theN � 1-particle system and the exact
ground state energy of the N-particle system. By introducing theN � 1 ground state energies
EN�1
0 and referring the total excitation energies to them, we obtain"N+1

n and"N�1
n . We

define thechemical potentials�N�1 of theN - andN � 1-particle systems, respectively, by

EN+1
0 �EN

0 = �N+1; EN

0 �EN�1
0 = �N�1 (1.45)

These are assumed to be independent of the particle number for largeN . Thus we have forG,
see Eq. (1.38),

G (k;E) = G+ (k;E) +G� (k;E)

=
X
n

jh	N+1
n

jbcy
k
j	N

0 ij2
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+
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jh	N�1
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jbckj	N
0 ij2

E + "N�1
n � �� iÆ

(1.46)

The structure of the denominators inG� accounts for the widespread application of the GF
formalism in spectroscopy. In fact, we can see that the poles of the GFG+ andG� give,
respectively, the affinities and the ionization potentials of theN -particle system. Thus, a
minimum"N�1

n = 0 refers to the lowest affinity and ionization potential in a conduction band
of a metal. In particular, we may consider the conservation of energy for the photoemission
process,

h� +EN

0 = "kin +EN�1
n

(1.47)

whereh� is the photon energy and"kin the kinetic energy of the photoelectron. We write
W for ��, the work function, represented by the vacuum barrier. The binding energy of the
photoelectron is then given by

"b = h� � "kin �W = EN�1
n + ��EN

0 = "N�1
n (1.48)

so that"b yields a measure of the excitation energies for theN � 1-particle system. Note that
it is defined as a positive quantity.

It is interesting to evaluate the many-body GF of Eq. (1.46) in the case of a system de-
scribed in the Hartree-Fock approximation. Again we are assuming that the remaining single
particle states remain unchanged in the process of adding to or subtracting a particle from the
N -particle ground state, so that we can approximate the final states of theN +1- andN � 1-
particle systems asj�N+1

n
i = bcy

n
j�N

0 i andj�N�1
n

i = bcnj�N
0 i, respectively. Thus the GF of

Eq. (1.46) becomes
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+
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(1.49)
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Measuring the energy with respect to the chemical potential,� := E � � and introducing
"N+1
n

= �k > 0, "N�1
n

= ��k > 0 for the Hartree-Fock energies�k of particles and holes,
respectively, we obtain

G(k; �) =
�(k � kF )

�� �k + iÆ
+
�(kF � k)

�� �k � iÆ
(1.50)

We thus retrieve Koopman’s theorem, according to which the value of� k + � are the affinity
and the binding energy of the system fork > kF andk < kF , respectively. It is interesting to
note that both residues around the poles are equal to one and the imaginary part goes to zero,
reflecting the fact that these are exact single particle states with infinite lifetime.

As regards the photoemission process, it is of fundamental importance to observe that the
derivation of Eq. (1.50) is based on the assumption thatj�N�1

n
i = bckj�N

0 i; that is, in the
process of subtracting from theN -particle ground state a particle in the spsk; the remaining
single-particle states remain unchanged. This is the reason why Koopman’s theorem provides
the binding energies in the so calledfrozen-orbital approximation, meaning that only the sps
statek is considered “active” in the photoemission process, while the otherN � 1 electrons
are “passive” spectators, “frozen” in their original single-particle states.

The main ingredient which is neglected in the frozen-orbital approximation is the fact
that when a photoelectron in a spsk is emitted from aN -particle system, the remaining
N � 1 electrons relax into a new energy state with energy lower than the Hartree-Fock energy
EN�1
n by an amount equal toÆErelax; calledrelaxation energy. As a result of neglecting the

relaxations, such calculations tend to over-estimate the binding energy. Moreover, Koopman’s
theorem must be corrected with the electron-electroncorrelation effectswhich are obtained in
going beyond the HF approximation and which reduce the total energy from its HF value.

Thecorrelation energyis defined as the difference between the exact energy and the one
calculated with Hartree-Fock, namelyEcorr = Eexact � EHF : The correlation energies must
be considered for both the initial and the final states, and they are larger in absolute value
for systems with higher particle number. Since the correlation energies are negative, the net
contribution to the binding energies from correlation effects is positive, i.e.ÆE corr = EN�1

corr �
EN

corr > 0.
Therefore, taking into account relaxation and correlation effects, the correction to the ex-

pression of the binding energies obtained by Koopman’s theorem is given by

"k = ��k � ÆErelax+ ÆEcorr (1.51)

We notice that the corrections due to relaxation effects and correlation effects tend to cancel
each other out, so that Koopman’s theorem provides a reasonable approximation for the bind-
ing energies in photoemission. Striking counterexamples are presented by insulators whose
HF gaps are significantly overestimated.

We now define thespectral density functions:

A� (k; �) =
X
n

��
	N�1
n

jbaj	N

0

���2 Æ ��� "N�1
n

�
(1.52)

Hereba stands forbcy
k

orbck, respectively, for the upper or lower sign. The spectral density func-
tions are obviously positive, vanish for� < 0, and are related to the momentum distribution
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functionhnki =
D
	N
0

���bcy
k
bck���	N

0

E
throughZ

1

0

dxA+(k; x) = 1� hnki ;
Z

1

0
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From this thesum ruleimmediately follows:Z
1

0

dx
�
A+ (k; x) +A� (k; x)

�
= 1 (1.54)

We can represent the Green function of Eq. (1.46) with the help of the spectral functions,
namely

G (k; �) =

Z
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dx
A+ (k; x)

�� x+ iÆ| {z }
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(1.55)

which in turn yields the spectral functions via

A�(k; �) = �
1

�
ImG(k;��); � > 0 (1.56)

Thus, the Green functionG contains the particle as well as the hole spectrum whereas each
spectral functionA+ andA� is associated with only one spectrum. For free particles the
spectral density is aÆ-function

A� (k; �) = � (�k � kF ) Æ
�
�� "N�1

n

�
= � (�k � kF ) Æ (�� �k) (1.57)

that is, the spectral functions areÆ-functions at the energies of the single-particle states. In
other words, if we are able to detect single-particle states in the system, these must have a
spectral function which is aÆ-function. Therefore, quasi-particles, which are effective single-
particle states, must have a spectral function which resembles aÆ-function, like a single peak.
We can imagine any curve resembling a sharp peak as being composed of a quasi-particle
peak plus a background. We can then make use of Eq. (1.55) with a spectral function which is
not aÆ-function any more but function with a certain width centered around the peak position.
The spectral function dominates in the integral, and it may be assumed that the peak can be
represented as a Lorentzian line, i.e. two complex conjugate poles at a quasi-particle state
�0
k
� i� with peaked contribution inA+ and at a quasi-hole state��0

k
� i� peaked inA�. If

we write the spectral functions as

A�(k; �) = �(�)
1

�

�Z

(�� �0
k
)2 + �2

+ background (1.58)

then Eq. (1.55)yields the following Green function through contour integration – both parts
G+ andG� complete the full real axis and of the poles at�i� only that one is picked up
which belongs to the imaginary half-plane opposite to that of the pole characterized by the
infinitesimalÆ in Eq. (1.55):

G(k; �) =
Z

�� �0
k
+ i�sign(�)

+ background (1.59)
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Note again that�0
k
> 0 holds for the particle case withA+ carrying the peak contribution, and

�0
k
< 0 for the hole case withA�. We can viewZ as the residue ofG�, the so-called renor-

malization constant. It represents the spectral weight of the dominant structure, the remaining
background being smooth. SinceA� (k; �) obeys the sum rule of Eq. (1.54),Z < 1 follows,
because the first term in Eq. (1.58) integrates toZ and the positive background accounts for
the difference from unity according to the sum rule. Equation (1.59) reflects the fact that the
quasi-particle is a single-particle state with a probability less than unity. The quantities� and
Z may depend onk as well as on�, because they derive from the self-energy, the more im-
portant dependence owing to�(�). For example, if�(�)=�! 0 for �! 0 in approaching the
Fermi energy, the right part Eqs. (1.53) and Eq. (1.58) reveal that< n k > vanishes from above
(�0
k
= 0+) and coincides withZ from below (� 0

k
= 0�). Thus theZ is equal to the disconti-

nuity of the momentum distribution function at the Fermi level: as expected, the discontinuity
is equal to1 for a noninteracting system, where the Fermi function is a� function atT = 0
which drops discontinuously to zero, and it is less than1 (and the step function gets partly
smeared) when the interactions are turned on. A particle peak of finite width above the Fermi
sea is not entirely confined to above the tail leading to a finite hole occupation below. That is
reflected according to Eqs. (1.53) and (1.58) by non-vanishingA �(k; �) for �0

k
> 0with � > 0.

A finite value of� shows a finite lifetime of the quasi-particle state. Investigating many-body
effects such as in strongly correlated systems photoemission spectra predominantly are inter-
preted in terms of quasi-particle energies and the spectral function, which seduces because of
its simplicity bearing the danger of misinterpretation, however. [39] The actual photoemission
analysis becomes a little delicate if the energy-dependent lifetime vanishes at the Fermi level
depending on the kind of Fermi-liquid. The spectral density is then no longer Lorentzian and
is sensitive to the asymptotic law , which can be experimentally investigated. [20, 48] For a
peak�0

k
within the Fermi sea,Z may be identified with the integral ofA� – compare Eq. (1.55)

with (1.59) – which thus corresponds via Eq. (1.53) to the quasi-particle weight of theT = 0
occupation number.

In spite of the advantage offered by the quasi-particle picture, there still remains the ques-
tion whether it is applicable in specific cases. However, if the perturbation theory for the
proper self-energy holds and if the self-energy can be analytically expanded in a power series
with respect to the perturbation parameter, then quasi-particle states may adequately reflect
the excitations provided the obtained lifetime is reasonably long. The latter decreases e.g.
in metals with decreasing distance from the Fermi level, so the picture may break down far
from it.

For the particular case of photoemission, neglecting theZ factor, the hole GF for a quasi-
particle (we should say “quasi-hole”) can be written as

G(k; �) =
1

�� �0
k
� i�

(1.60)

with 1
~
� = ��1 being the inverse lifetime� of the single-particle state. This form is partic-

ularly useful because it allows us to see a direct connection among GF, spectral function and
self-energy, see Eq. (1.21). In fact, if the self-energy can be estimated, all the many body
effects can then be described by considering a quasi-particle with renormalized energy equal
to �0

k
= �k + �r + i�i; where�k is the energy of the bare particle and the self-energy is
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expressed by its real and imaginary parts as� = �r+ i�i: Therefore, we see that the real part
of the self-energy describes the correction to the value of the energy of the bare particle, while
the imaginary part describes the finite lifetime of the quasi-particle state. In other words, we
consider in Eq. (1.60)�0

k
= �k +�r and� = �i:

We thus obtain the following formulas often found in the literature
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�� �k ��
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(1.61)
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(1.62)

1.2.9 Photocurrent

A general expression for the photocurrent in photoemission is given by the expectation value
of the current operator, cf. [64], using SI units:

j(r; t) = 2
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2m
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r
�rr) +

ie2

m
A(r; t)

�
G<(rt; r0t)

����
r
0=r

(1.63)

with G< the electron-occupation propagatoras denoted by Caroli et al. [17] andA is the
vector potential of the photon field. Imagine replacing the particle operators inG< by one-
particle wavefunctions, then this expression reduces to what one derives for the current in
usual quantum mechanics. A gauge is used with vanishing scalar potential. The last term
in Eq. (1.63) leads to a paramagnetic contribution proportional to the vector potentialA. It
occurs as a product of the particle density andA both taken at the position of the detector
which lies far outside the solid, and thus vanishes. One is left with the first part where time
has to be made infinite or which has to be averaged over time (according to the Abelian
limit) so as to obtain the whole photocurrent, thereby leaving the DC component. The time
averaging allows the representation by an energy integral of the Green function by Fourier
transformation. However, energy resolution as achieved by experimental analyzers can be
theoretically simulated by adding a retarding grid-like artificial vacuum levelW =W 0 + "kin

at the desired energy far outside the solid. Thus, the energy resolved current at timeT with
detector at positionR is obtained by differentiating with respect to the work function:

�
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����R0=R
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(1.64)

Here, the Green function includes, besides the full interacting Hamiltonian, an external field
which depends explicitly on time. A convenient treatment in the framework of Green-function-
based nonlinear transport theory is offered by theKeldysh technique[68]. It is very similar to
usual ground-state or equilibrium perturbation theory, so the details are not important in this
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context. Because the time dependence of the field extends over the total interval of the mea-
suring process, the particle operators inG< do not only locally depend on the time entering
the field. The destruction of a particle at timet2 occurs when the field could already act upon
the ground state for some time. It acts further at times before and after the associated creation
of a particle att1, resulting in a state whose probability as part of the ground state is probed
in G<. These features have to be treated within this kind of perturbation expansion.

The diamagnetic part is expanded in powers ofA according to a perturbation series. The
zeroth order ofG< carries no current and the first order contributes to the linear conductivity
at the detector, which may be discarded by reasoning similar to the neglect of the paramagnetic
current. The first non-trivial part arises in second order,G (2)<, showing photoemission as a
quadratic response effect. Much higher fields would require orders that are higher than the
second considered in the following.

The one-body Hamiltonian of the external field consists of a linear and a quadratic expres-
sion inA,

hp + hd =
ie~

2m
(A � r+r �A) +

e2

2m
A2 (1.65)

a paramagnetic and diamagnetic part, respectively. The latter has to be treated in first order,
the former in second order. In the first-order term, the time averaging of the photocurrent
appearing in Eq. (1.64) simply yields the time average ofA 2 because the field-free ground-
state Green functions depend only on the time difference. In frequency space, this means a
static field which does not contribute to excitations of non-vanishing energy and thus not to
those above the vacuum level for the photocurrent. Only the second order term remains

G(2)<(R;R0;T; T )

=
i

~2

Z
d1d2 < N j y(1)hp(1) (1) y(R0; T ) (R; T ) y(2)hp(2) (2)jN >

(1.66)

where the notation of space and time variables has been condensed into numbers 1 and 2. The
time ordering in this time dependent formalism has already been inserted, thus leading to the
above sequence of operators. To lowest order, i.e. no electron-electron interaction contained
in the formal time dependence of (y)(t),G(2)< can be decomposed through decoupling into
( ;  y) pairs (Wick theorem):

G(2)<(R;R0;T; T ) =
1

8�

Z
dE

Z
d3(r1; r2)

Gr(R; r1;E)hp(r1)G
<(r1; r2;E � ~!)hp(r2)G

a(r2;R
0;E) (1.67)

Here we have abbreviatedhp(r) = ie~

2m
(A(r) � r + r � A(r)), the retardedGr = G �

G< and advancedGa = G � G> Green functions, and specified the vector potential as
A = A(r) cos(!t). Expression (1.67) must be inserted into Eq. (1.64) for the photocurrent.
Only the absorptive part ofcos(!t) contributes, leading toE � ~!. We recall that the above
Green functions may still include the whole many-body interaction processes. However, the
expansion in the external field cannot be fully decoupled without taking the interaction into
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account, i.e. there might be, for instance, a Coulomb interaction taking place between any two
electrons before and after the excitation atr1, which is ignored by decoupling as a product
of three Green functions. Instead, one should go back to Eq. (1.66), which consists of a
product of six fermion operators to be averaged over the ground state. The presented term
corresponds only to that which factorizes into three Green functions which can of course be
taken as dressed by the interactions in the form of self-energies. Other terms involve a higher
number of Green functions which cannot be accounted for by that dressing. These processes
yield an example of vertex renormalization. Let us represent the basic expression of Eq. (1.67)
with undressed Green functions by the triangle as in Fig. 1.6a: then possible contributions are
represented in Fig. 1.6b, dressing according to Eq. (1.67) as well as renormalizations of the
vertex. The Green function considered in the figure has been doubly time-Fourier-transformed
into the energy regime.

FIGURE

Figure 1.6: Schematic representation of contributions to photocurrent: a) General dressed Green func-
tion (top), second order with respect to external field O and interactions neglected (middle), and same
as above closed to a vertex with upper corner decorated by external nablas of current (bottom); b)
self-energy insertions contributing to the dressing of Green functions in equation (1.67) (top), vertex
renormalizations beyond (1.67) (bottom), broken lines represent Coulomb interactions.

The equivalence of Eqs. (1.64) and (1.66) in the one-body limit with theGolden Rule
formula and with other representations has been shown, see e.g. [31, 74, 75, 96]. With the
asymptotics ofoutgoing states, see e.g. [41,93] (we will come back to that point shortly), we
expand with respect to a full set for energies"k =W0 + "kin above the vacuum levelW :

Gr(R; r1;E) =
X
k

< Rj��

k
>< ��

k
jr1 >

E � "k � �+ iÆ
(1.68)

Similarly, Ga is obtained with a negative sign in front of the infinitesimal. Denoting the
occupied one-particle bound states by< rjj > the electron-occupation propagator simplifies
to

G<(r1; r2;E � ~!) = 2�i
X
j

occ

< r1jj >< jjr2 > Æ(E � ~! + "j � �) (1.69)

TheR ! 1 behavior of Eq. (1.68) follows from Eq. (1.8) by using the asymptotics of the
free-particle Green function which describes an outgoing spherical wave and by expanding in
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the exponentjR� rj = R� r �R=R+ :::

Gr(R; r;E) = �
m
p
�

2�~2R
eik0R < ��

k0
jr > (1.70)

< ��

k0
jr > =

1
p
�
(e�ik0�r +

Z
d3r1e

�ik0�r1V (r1)G
r(r1; r;E)) (1.71)

Periodic boundary conditions with cell volume� have been applied. The function defined in
Eq. (1.70) is the complex conjugate of an asymptotically plane wave with wave vectork 0 =q

2mE

~2
R=R leading to the detector, accompanied by scattering waves of the potential running

into the solid. The function itself shows an ”incident” plane wave from the detector to the
sample and scattered waves leaving the sample, which characterizes the state in a low energy
electron diffraction (LEED) experiment. However, the complex conjugate will appear in the
subsequent matrix elements at those positions where the wave function should be present,
similar to its appearance in Eq. (1.68). Consequently, it is the time-reversed LEED state
which occurs as the final state in photoemission. This result is here inferred from the property
of the retarded Green function. Note that< Rj��

k0
> vanishes below the vacuum barrier, thus

a step function�(E � ��W ) is implicit to the definition of Eq. (1.70).
Quantization of the light as one photon with energy~! and unit vectore of polarization

yields:

hp =

s
e2~3

2�0m2!�

1

2
(e � r+r � e) (1.72)

Introducing the matrix elements

< ��

k0
jhpjj >=:

s
e2~3

2�0m2!�
�k0j (1.73)

the expression (1.67) becomes:

G(2)<(R;R0;T; T )

=
im2�

16�2~4RR0
eik0(R�R

0)

Z
dE

X
j

occ

j < ��

k0
jhpjj > j2Æ(E � ~! + "j � �)

(1.74)

This is inserted into Eq. (1.64) and account is taken of the implicit step function�(E�W��)
in j��

k
> with respect to the lower energy bound atW + � when differentiating:

�
dj(R; T )

d"kin
=

1

4�R2

e~k0

m

e2

4��0

1

~!

X
j

occ

j�k0j j
2Æ(W0 + "kin + "j � ~!) (1.75)

Equation (1.75) displays the differential photocurrent with respect to kinetic energyd" kin

from the flux of one photon. The counts per solid angled dJ

d"kin
are obtained by multiplying
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with R2d
. This is theGolden Ruleformula, in valence band spectroscopy often denoted
as theone-step model[91] because it implicitly includes the three steps of excitation, scat-
tering by the lattice and penetration through the surface as a single step. The last two steps
are completely contained in the LEED wavefunction whose time reverse obviously enters the
matrix elements. TheGolden Rulecondenses these together with the excitation into one co-
herent process. It is clear that self-energy dressing of the Green functions does not violate the
above derivation within the one-particle approximation. Thus, an optical potential inG r(Ga)
decribes a part of the extrinsic losses that the electron suffers after excitation. Instead of
Eq. (1.69) the hole spectral density functionA�, see Eq. (1.52), may be introduced in the
position representation, which takes account of intrinsic broadening, as for instance with the
finite lifetime of a particle-hole excitation. However, photoelectron-photohole interaction is
discarded in both.

The consideration of the general photocurrent is accomplished systematically via the Green
function technique described below Eq. (1.67) with an expansion to arbitrary order.

Different physical insight is gained through exact decomposition of Eq. (1.66) with a
complete set of states for (N � 1) particles, as given by Almbladh’s derivation [3]. The time
integration is carried out and only the light absorption part is retained, viz.

G(2)<(R;R0;T; T ) =
i

4

Z
d3(r1; r2)

X
s

< N j y(r1)hp(r1) (r1)
1

EN
0 + ~! �H � i�

 y(R0)jN � 1; s >

< N � 1; sj (R)
1

EN
0 + ~! �H + i�

 y(r2)hp(r2) (r2)jN >

(1.76)

where the indexs enumerates the states of the set. The particle operators which appear with
their arguments at an asymptotic distance are expanded with respect to a full set of one-particle
states, y(R0) =

P
k0
�?
k0
(R0)cy

k0
, chosen to asymptotically exhibit spherical-wave behavior,

i.e. �?
k0
/ 1

R0
e�ik

0
R
0

, both inbound and outbound. We denote as"k0 the corresponding
energies of a free particle and consider the first matrix element in Eq. (1.76). AnN -particle
excited state with an electron at the detector position can be defined as

jN � 1; s;R0 >
m
p
�

2�~2R
:=

1

EN
0 + ~! �H � i�

 y(R0)jN � 1; s > (1.77)

=
X
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�?
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(R0)

EN
0 + ~! �EN�1

s � "k0 � i�
(1 +

H �EN�1
s

� "k0

EN
0 + ~! �H � i�

)cy
k0
jN � 1; s >

(1.78)

Led by the one-particle derivation above, we consider here the first term in the parentheses
which is the only one that remains whency

k0
jN � 1; s > is an eigenstate ofH with energy

EN�1
s

+"k0 . Contour integration with respect to"k0 has to proceed along the lower half-plane
to yield a non-vanishing result, because it then encloses a pole, located at" k0 = EN

0 + ~! �
EN�1
s . Only the negative sign in the exponent ofe�ik

0
R
0

allows closing along the lower half-
plane such that only a spherical wave which is incident onto the solid survives. Extracting
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this asymptotic factor similar to Eq. (1.70), the sum over the directionsk̂0 leaves a state which
has to overlap with the emitter volume for non-zero result. This fixesk̂0 = R0=R0 which
yields a plane wave incident into the detector with wave vectork 0 becausecy

k0
jN � 1; s >

is asymptotically anoutgoing state, in view of the sign of�i�. This is characteristic of a
time-reversed LEED state, i.e. spherical wavein and plane waveout as seen from the emitter
volume.

The second term in the parentheses corrects for the many-body coupling of this state to
the emitter volume. Expanding (r) =

P
j
�j(r)cj with respect to a set of states bounded

within the emitter volume, inserting in Eq. (1.64), and using� = �W 0 we arrive at

�
dj(R; T )

d"kin
= N

X
s

���X
ij

�ij < N jcy
i
cj jN � 1; s;R >

���2
� Æ(EN

0 + ~! � EN�1
s

� "kin) (1.79)

whereN denotes the normalizing factor in front of the sum in Eq. (1.75). TheÆ-function of
energy conservation arises again via an implicit step function within the statejN � 1; s;R >

which must vanish for energies below the detector’s vacuum level.
We can see a relation to the sudden approximation by replacing in the notation ofjN �

1; s;R > the positionR by the momentumk of the emitted electron, which is a convenient
characterization of the exact outgoing state of Eq. (1.77).

In thesudden approximation[50,51] the photoelectron is approximately decoupled from
the solid by defining a particle operator with respect to that state

jN � 1; s;k >= c
y

k
jN � 1; s >

with the assumption thatcy
k

does not depend ons and vice versajN�1; s > not onk. It leaves
a matrix element< N jcy

i
cjc

y

k
jN � 1; s > which couples the isolated photoelectroncy

k
only

to the density fluctuationcy
i
cj , but does not influence the choice of the excitedN � 1-particle

statesjN � 1; s >. All of the latter are now summed independently disregarding the state
of the photoelectron. It is similar tosuddenlycreating the photoelectron in the detector at a
probability with which it is contained in the density fluctuations of arbitrary (non-adiabatic)
excitations, see also the chapters by Hedin and by Rehr, Albers, and Ankudinov. The property
of being sudden becomes still more apparent by approximately equatingc jc

y

k
= Æjk, i.e.

neglecting its coupling to the fluctuations. The current can then be expressed as

�
dj

d"kin
= N

X
s

���X
i

�ik < N jcy
i
jN � 1; s >

���2
� Æ(EN

0 + ~! � EN�1
s

� "kin) (1.80)

or with help of the spectral density matrix, see Eq. (1.52),

�
dj

d"kin
= N

X
ij

�ikA
�

ij
(~! �W0 � "kin)�kj (1.81)
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Unlike Eq. (1.52), a matrix generalization of the spectral density is implied with analogous
definition, namely instead of the same index for both operatorsc and c y squared, two in-
dices have been applied. However, in its simplest version this sudden approximation assumes
that the hermitean matrixA is already diagonal. With equation (1.81) we are back to the
one-particle photoemission formula of Eq. (1.67) inserted in (1.64), with the Green functions
appropriately dressed.

At the heart of the sudden approximation lies the assumption that in the photoemission
process the photoelectron can be treated as if it were independent from the other particles of
the system. Then, the photoemission process can be described as consisting of two decoupled
and non interfering processes, the transition from an initial to a final one-particle state of the
photoelectron and the many-body response of the(N � 1)-particle system to the creation of
the hole left behind.

The series of approximations within the sudden approximation usually goes further in
simplifying the matrix elements�ik, in the limit assuming them to be constant. The one-step
model whose main achievement was the introduction of the time-reversed LEED state is then
entirely lost.

According to their definitions, the spectral functionsA+ andA� describe the spectrum
of the excitation energies when a particle is added or removed from the system and are said
to describe the situation of an idealized inverse or direct photoemission experiment. What
these approximations omit from a realistic description of photoemission is that the particle
will be measured with a detector that is still part of the system, even if separated from the
solid by a surface. Also missing is that the process is a result of interaction with light which
is associated with a cross section. Last but not least it lacks the treatment of the photoexcited
particle with its screened hole when leaving the solid. Thus, in the many cases where the
spectral density is taken as the theoretical counterpart of the photocurrent, also called sudden
approximation, only a rather poor description is achieved. [39] Nonetheless, since effects
of matrix elements and final states on the photoelectron energy distribution are governed by
the energy scale of bandstructures, i.e. eV, it may sometimes be possible to single out and
identify tiny structures due to many-body interactions on an meV scale, such as those seen in
superconducting systems. [19] However, it remains true that the photoelectron is artificially
and suddenly decoupled from the many-body system and no interaction is taken into account.
Recently, it has been recognized theoretically [6, 78] as well as experimentally [13, 38] that
matrix elements and their dependence on the final state are important in high temperature
superconductivity and that their neglect could lead to misinterpretations of the spectra.

1.3 Three-step model versus one-step model

By way of introduction to this section, we shall focus on one aspect that has become a long-
standing but also increasingly confusing concept, namely the issue of the three-step versus the
one-step model of photoemission.

The three-step model dates back to Berglund and Spicer [9] on angle resolved photo-
emission from solids, which presents a first approach to its theoretical interpretation. The
photocurrent is decomposed into three separate factors: the probability of excitation in the
bulk solid, the probability of scattering of the excited electron on its path to the surface by
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the atoms constituting the solid, and the probability of transmission through the surface for its
final acceptance in the detector. The essential point is to calculate separate entities which are
easily accessible if they do not interfere with each other. If valence level spectroscopy is the
goal, then the focus of attention is on the excitation process from an occupied band state and
the photocurrent shows the energy levels at specific directions which are identified with the
k value (i.e. the electron momentum in the bulk). The two remaining factors, scattering and
transmission, are considered to be less important: they may even be set to unity by neglect-
ing those effects. By contrast, photoelectron diffraction might lie at the center of interest, as
for instance in core level spectroscopy or in imaging methods like holography: in that case,
thek dependence of the occupied states is trivial but the scattering by bulk and surface deter-
mines the angle variation of the photocurrent. Then, the first factor, excitation, becomes rather
unimportant whereas the other two dominate the interpretation.

In contrast to the three-step model the coherent evaluation of all three steps whicha priori
do interfere is usually denoted as the one-step model. It was originally developed to obtain
reliable intensities of valence band spectroscopy for investigating bulk as well as surface char-
acteristics [34], so bringing the accuracy on an equal footing with LEED calculations where
refined computer codes existed. [57, 58, 90] Thus, the scattering in the bulk and at the sur-
face is condensed into a coherent final state which must be introduced into the matrix element
of photoexcitation, the so-called time-reversed LEED state. [31] As photoelectron-diffraction
schemes are closely related to LEED those calculations already obeyed the conditions of the
one-step model in principle, though with an important practical simplification by considering
only localized, i.e. atomic-like, transitions as they occur in core excitations.

Nowadays, state-of-the-art calculations of photocurrents use the one-step model, even
though some valuable short cuts exist. The incorporation of “true” final states which cor-
rectly describe the scattering and propagation near and outside a surface is required by the
physical situation of accepting the excited electron in the detector at infinite times away from
the sample: this is the essential ingredient of the one-step model. The model exists at sev-
eral levels of sophistication, depending on the extent to which many-body effects are taken
into account. Originally, the one-step model was designed as a one-particle theory applying
the Golden Rule for one-particle states. The many-body formulation according to the consid-
erations in Section 1.2 in principle should use correct final states as well, and thus fits into
the concept of the one-step model. Thus, it would be informative to characterize any given
one-step model by describing its level of accuracy in addition to its “one-step” property.

Let us confine the remaining of this section to one single initial state as e.g. in core
level spectroscopy. Incorporation of an arbitrary number of states as in the valence band
regime will be described in subsequent sections. Current theories of photoemission in solids
rely in general on one-electron effective potentials to describe the photoelectron. At low
kinetic energies, these potentials must incorporate many-body effects in an effective way (e.g.,
exchange and correlation via the Hara or other approximation). Then, the photoelectron wave
function can be expressed as

 (r) =

Z
dr0Gr(r; r0)VI (r

0) i(r
0)

whereVI describes the perturbation of the external light, i is the initial state one-electron
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wave function of energyEi, and

Gr(r; r0) =
X
f

 �
f
(r0) f (r)

Ei + ~! �Ef + iÆ

is the Green function of the solid at the photoelectron energyE i+~! , cf. Eqs. (1.7) and (1.12).
The latter must incorporate all multiple elastic scattering effects of the photoelectron, as well
as inelastic processes in which the photoelectron loses energy to create photons, plasmons, or
other excitations in the solid.

1.4 Golden Rule

1.4.1 Linear response in the external field

Let us here start with the Hamiltonian of one electron in a system described by a potential
V (r), to which an external electromagnetic field is applied:

H =
1

2m

�
p�

e

c
A(r)

�2
+ V (r)

=
p2

2m
+ V (r) �

e

2mc
[A(r) � p+ p �A(r)] +

e2

2mc2
jA(r)j2 ; (1.82)

whereA(r) is the vector potential associated with the field. Let us split the HamiltonianH

into two terms (H = H0 + VI ), such thatVI describes the excitation:

H0 =
p2

2m
+ V (r)

VI =
�e
2mc

[A(r) � p+ p �A(r)] +
e2

2mc2
jA(r)j2 : (1.83)

For low intensities of the external field, first order perturbation theory can be used to study the
interaction between the electromagnetic radiation and the system. Thus, applying the Golden
Rule to calculate the photocurrent, we obtain:

I(f) = jMif j
2 = j <  f jVI j i > j

2
; (1.84)

where the one-electron wavefunctions i and f are eigenfunctions of the HamiltonianH0,
and the final wavefunction f behaves as an outgoing wave at infinity (i.e., f is an inverse
LEED state).

The flexibility introduced by the gauge choice in the theory of electrodynamics facilitates
the calculation of the matrix element. A common choice is to work in the Coulomb gauge, in
which:

r �A(r) = 0 ; (1.85)

and consequently

(A(r) � p� p �A(r)) = i~r �A(r) = 0 : (1.86)
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The interaction potentialVI can thus be expressed as:

VI(r) = �
e

mc
[A(r) � p] +

e2

2mc2
jA(r)j2 : (1.87)

So far, the most important approximations introduced in the theoretical formalism are
the restriction to a one-electron picture, and the use of only first-order perturbation theory
to calculate the interaction between the incident radiation and the system (Eq. (1.84)). The
latter approximation is equivalent to neglecting terms of order� jAj 2 in the calculation of
the photocurrent. In order to be consistent with this approximation, the term of order� jAj 2

in the interaction potentialVI (Eq. (1.87)) is omitted as well. This approximation remains
valid provided that the flux of incident photons is relatively low. For higher intensities of the
external field these terms cannot be neglected and the theoretical formalism becomes more
intrincate.

The matrix elementMif after keeping only the lowest-order terms can be written as:

Mif = <  f jVI j i > =
�e
mc

<  f jA(r) � pj i >

=
ie~

mc
<  f jA(r) � rj i > ; (1.88)

where we have used the identityp̂ = �i~r̂. This way of writing the matrix element has been
usually called in the literature thevelocity formof the matrix element.

1.4.2 Dipole approximation

The theoretical description of the interaction between the electromagnetic field and the system
is usually simplified by means of the so-calleddipole approximation. The dipole approxima-
tion assumes that the variation of the external fieldA(r) is small in the spatial region in which
the matrix elementMif is not negligible. The latter seems a reasonable assumption for the
low energy range of the photon spectrum and/or for the photoexcitation of localized electrons,
although it is more difficult to justify in some other cases (such as excitation from valence
levels). In general terms, it works better in the evaluation of total cross sections than in the
calculation of photoelectron angular distributions. Recent measurements in small systems
show that significant deviations from the dipole approximation can be found even in systems
for which it has been traditionally applied [22]. Nevertheless, let us restrict ourselves to the
calculation of the photocurrent in the dipole approximation.

When the external electromagnetic field is periodic in space, it can be expressed as:

A(r) = A0 e e
ikr = A0 e (1 + ikr + � � � ) ; (1.89)

whereA0 is the complex amplitude of the field (a scalar number),e is a unitary vector in the
direction of the light polarization, andk is a vector pointing in the propagation direction of
the field. The dipole approximation consists in keeping only the first term of this expansion in
the calculation of the photocurrent via Eq. (1.84) (i.e., it is assumed thatjkrj << 1). Notice
that the range ofr for which the approximation remains valid is delimited by the spatial extent
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of the wavefunctions i(r) and f (r). The matrix element in the dipole approximation can
thus be expressed as follows:

Mif =
ie~

mc
A0 <  f je � rj i > : (1.90)

Let us remember at this point that the momentum operatorp̂ can be written as the com-
mutator of two other operators:

p̂ = � i~r̂ = �
im

~

h
r̂ ; Ĥ0

i
: (1.91)

Hence, if i and f are eigenstates of the HamiltonianH0, the matrix elementMif can
be calculated as:

Mif = �
ie

~c
A0 (Ef �Ei) <  f je � rj i > ; (1.92)

and this is known as thelength formof the matrix element. A third form, known as the
acceleration formof the matrix element, is sometimes used in the literature as well:

Mif =
�ie~
mc

A0

(Ef �Ei)
<  f je � (rV )j i > ; (1.93)

in which the identity

<  f jrj i > =
1

(Ef �Ei)
<  f j [H;r] j i >

= �
1

(Ef �Ei)
<  f jrV j i >

(1.94)

has been used.
The three forms of the matrix element are in principle equivalent, provided that i and

 f are eigenstates of the HamiltonianH0. This is not always the case in real calculations of
the matrix element, and some differences may be found in the final result depending on the
form used. See for instance Ref. [81] for a discussion on the most accurate form of the matrix
element depending on the problem under study.

For a single atom, the dipole approximation leads to certain selection rules in the symmetry
of the photoemitted electron wavefunction. These selection rules can be easily derived by
expanding the wavefunctions in the basis set of spherical harmonicsY lm(
r). For the sake
of simplicity, let us assume that the initial wavefunction i(r) of the electron is a core level
whose quantum numbersli andmi are well defined. i(r) thus can be written as:

 i(r) = Ri

limi
(r)Ylimi

(
r) ; (1.95)

whereRi

limi
(r) is the radial part of the wavefunction.

The final wavefunction after photoemission has a similar form and can be written in gen-
eral as:

 f (r) =
X
lf ;mf

R
f

lfmf
(r)Ylfmf

(
r) : (1.96)
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Let us first take linear polarization of the light, and assume that the polarizatione is parallel
to the OZ axis. The incoming light dipole operator (cf. Eq. (1.92)) can thus be expanded as:

e � r =

�
4�

3

�1=2

r Y10(
r) : (1.97)

The expansions of the wavefunctions and the dipole operator can be introduced into
Eq. (1.92) to obtain the matrix element as:
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�
: (1.98)

The integral over angles
r determines the allowed symmetries for the final states. Ac-
cording to general properties of the spherical harmonics, this integral is different from zero
only if lf = li � 1 andmf = mi.

If the incoming light is circularly polarized, the mathematical description can be also sim-
plified by modifying the geometry. In this case, let us take the OZ axis as parallel to the
direction of propagation of the light. Hence the plane of polarization of the light is perpendic-
ular to the OZ axis, and the incoming light dipole operator can be written as:

e � r =

�
8�

3

�1=2

r Y1m(
r) ; (1.99)

wherem = 1 corresponds toright circularly polarized light andm = �1 corresponds to
left circularly polarized light (although the opposite convention is sometimes found in the
literature as well). The matrix element for circularly polarized light can be calculated in a
similar way as the matrix element for linear polarization (Eq. (1.98)). We only need to replace
the spherical harmonicY10(
r) by Y1m(
r). As a consequence, the integral over angles
r

now generates new selection rules:lf = li � 1 (as before), butmf = mi +m = mi � 1.
The selection rules in the dipole approximation are strictly valid only for atomic systems.

Nevertheless, in the case of molecules, clusters or solids, the scattering theory provides a
simplified picture in which the selection rules fit as well. The photoemission process from
a core level can be described as the photoexcitation from a single atom, followed by the
transport of the photoelectron on its way to the detector. In this picture, the selection rules
remain valid for the first step of the process (the photoexcitation from the single atom). The
subsequent scattering of the outgoing electron by the surrounding atoms will add other partial-
wave contributions to the final photoelectron pattern.

1.5 Initial state

1.5.1 Core levels

In core level spectroscopy photoelectrons emerge from single atomic levels which simplify the
initial state as far as the single particle picture is concerned. Chemical shifts may change the
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levels due to local effects near a surface, but the levels may still be considered to be indepen-
dent (not counting systematic atomic-like degeneracies). Therefore, we will discuss this topic
within the description of the final states, see Section 1.6, where the core level emission consti-
tutes the simplest case to be treated. A rather more complicated situation arises if many-body
effects are considered, see e.g. [87]. Then, the relaxation of the core hole multiplet together
with its interaction with the photoelectron represents a challenging problem. Progress in this
field is described in chapter [49] of this handbook. Aside from spectroscopy, in an extremely
important development core level emission has served as source for photoelectron diffraction
and holography [27] (see chapter [47] and chapter [28]), owing to the localized nature of the
source of emission.

1.5.2 Valence bands

Angle resolved photoelectron spectroscopy represents the most general tool for full valence
band investigation at highest accuracy. The aim is to extract from the photocurrent the band-
structure over the whole Brillouin zone. Thoughab initio bandstructure calculations have
reached a high level of reliability, their accuracy is limited by computational restrictions and
the physical border line of many-body effects. Thus, the experiment is needed as confirma-
tion on one hand and as access to uncover new properties not considered in the bandstructure
calculation on the other.

The interpretation of valence band spectra uses intuitive methods relying more or less on
energy and momentum conservation or is assisted by full calculations of the intensities, at best.
To discuss both, we write the Golden Rule formulation taking into account the continuum of
valence band states indexed by the band� and the three-dimensional momentumk

I /
P

�k
j < �?

LEED(E;k
0

k
) j O j  �(k) > j2Æ(E �E�(k) � ~!): (1.100)

The final state� depends on the surface parallel momentumk0
k

and on the final state energyE
which corresponds to the perpendicular momentum component in vacuum. The index LEED
relates to a LEED state and the star refers to its time inverse. Energy conservation is guar-
anteed by theÆ-function. Momentum conservation is reduced to the parallel momentum. It
arises from the evaluation of the matrix element with operatorO = A � p + p �A. Transla-
tional invariance is only maintained parallel to the surface, the vector potential being assumed
constant in the case of long wavelengths, including the vacuum ultraviolet regime. Discrete
translations according to the lattice periodicity are meant here when speaking about invariance
and the Bloch vector is thus associated with momentum. The surface breaks invariance in the
perpendicular direction. The parallel momentum which is calculated in vacuum through ki-
netic energy and direction of the detector has to be folded back into the first surface Brillouin
zone to be identified withk0

k
of Eq. (1.100).

From Eq. (1.100) it is obvious that three-dimensional momentum will be conserved if one
replaces the final state by any eigenstate of a system with three-dimensional translational in-
variance. This is done within theband-mappingscheme where in the simplest case the final
states are taken to be three-dimensional plane waves. In a more sophisticated treatment, the
set of eigenstates of the bulk may be used as final states. Furthermore, solving the bulk hamil-
tonian with complex Bloch vectors generalizes this set and admits exponentially decreasing
and increasing solutions; of the latter only those which increase in the direction towards the
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FIGURE

Figure 1.7: Ab initio computed spectrum of GaAs(001) for photon energy 28 eV (lower part) deconvo-
luted to yield peaks at energies marked by bars with full dots, compared with bare bars mapped from
intersections of initial bands (black lines) with final bands (flat curves) shifted by photon energy down
to binding energy scale (upper part), one example shown by dotted line; insert shows density of states
and a matrix element, position of direct transition near -4.5 eV indicated.

surface are physically reasonable. All these sets are eigenstates of the Bloch momentum and
thus conserve the total momentum in the matrix element. The interpretation of the photocur-
rent within these schemes identifies the possibilities of transitions between all valence states
and all final states belonging to the chosen set and allowed by energy and three-dimensional
momentum conservation, the so-calleddirect transitions. Primarily, this takes advantage only
of the spectral peak positions. Their height will correspond in some way to the weight of the
matrix element and their width may be associated with the lifetime of the valence states. In
any case, this description yields a mapping between momentum and energy for all momen-
tum space points which can be associated with peaks in the spectra, i.e. it yields parts of the
bandstructure. [32, 65] It is more or less accurate depending on the ability to define a clear
peak.

The accuracy of the band-mapping can be estimated by comparing it with a full calculation
of Eq. (1.100). In Fig. 1.7 a spectrum computed accordingly is presented and interpreted by
direct transitions which is represented by bars on top of the peaks obtained by a deconvolution
procedure. Any of the known deconvolution techniques leads to similar positions. Above
the spectrum the valence bandstructure together with the complex bandstructure is shown
shifted by the amount of the photon energy such that the intersections give the allowed direct
transitions. These intersections are also marked by bars in the spectrum. If both kinds of bars
agree in position the momentum associated with the intersection has to be attributed to the
peak and its binding energy. Of course, only distinct peaks may be considered. However,
the result of Fig. 1.7 shows clear misfits which reach up to 200 meV. If we had taken the
peaks of the spectra to be granted and with a knowledge of the final states bandstructure, had
extrapolated through their energy to the associated momenta, then the momentum would be
wrong and the maximum error in energy could reach values up to 200 meV. This error is
large compared to the actual energetic resolution of photoelectron spectroscopy which can be
below 10 meV. Nevertheless, it is the most advanced procedure within the framework of band-
mapping, using the complex bandstructure, i.e. eigenstates of a hamiltonian which simulates
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the solid-vacuum system by bulk.
A different but less instructive view on the observed spectra entirely neglects the final

states’ bandstructure: it assumes that, because of the dense distribution of excited states at
high energies, theÆ-function can always be fulfilled and the matrix elements are constant
throughout. Then the sum over initial states in Eq. (1.100) condenses into the density of initial
states. As the parallel momentum is prescribed by the detector, this is a one-dimensional
density of states which counts the states per energy only along the perpendicular direction.
The selection rule for the perpendicular momentum is replaced now by the dominance of
band edges and critical points, the only structures in the spectra surviving in this model. A
single direct transition would have no weight, e.g. see insert of Fig. 1.7.

In physical reality both pictures, band-mapping and density of states, will contribute.
However, the amount of nonconservation of perpendicular momentum and the necessity to
refer to density-of-states effects can be estimated with a knowledge of the final states’ bands.
The final state in Eq. (1.100) can be decomposed in the interior of the solid with respect to
the complex Bloch vector states and a weight is associated with each. The imaginary part of
the Bloch vector partly results from the imaginary part of the self-energy and partly from the
damped penetration from surface into bulk if the electron’s energy coincides with a forbidden
gap region. It determines the momentum broadening of the surface perpendicular component
and thus limits the admissable uncertainty for a deviation. The equation sums up all these
contributions. Other transitions cannot occur and thus the density-of-states effect has to be
embedded in direct transitions.

In contrast with its general deficiencies, the density of states interpretation has experienced
a development towards many-body effects. The energy conservationÆ-function can be seen
as the imaginary part of the Green function if the imaginary part of the self-energy tends to
zero. For finite lifetime this becomes the spectral density in the framework of many-body
theory. TheÆ-function including valence wavefunction and the sum over band index� has
to be replaced by the spectral density matrixA�

ij
(k; E) in the representation by any basis set

j i > with fixed Bloch vectork viaX
�

Æ(E �E�(k)) < i j  �(k) ><  �(k) j j >! A�
ij
(k; E); (1.101)

see equation 1.52 where indexk now denotes(�;k). Thus, it takes into account the correct
many-body distribution of valence levels if the terms with the Dirac brackets are generalized to
the many-body transition amplitudes< 	N�1

n jbci(k)j	N
0 > of Green functions in Eq. (1.101):
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) > A�

ij
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compare with equation 1.81 and the discussion following it. In practice, one neglects the
whole non-valence part of the Golden Rule, i.e. final states as well as matrix elements, and
takes merely the diagonalA to represent the photocurrent. This procedure may be justified
for instance in cases where the interesting structures of the photoemission spectra vary rapidly
as compared to the variation induced by matrix elements. The latter is characterized by band
energies of the order of magnitude of eV. As a consequence, the analysis of spectral features
from HTC superconductivity with a meV scale of variation may be justified. [82]
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Between the direct transition and density of states interpretations a series of intermediate
schemes have been proposed in the literature, some of them occurring also in the context of
other chapters in this book, where they are further described.

In the following, we present specific examples of full one-particle calculations in the
framework of the Golden Rule formula.

The first main development in this respect concerned photoemission from metals for which
the use of muffin-tin potentials in the framework of a multiple scattering method is suit-
able. [57, 91] The layer-KKR code had the time inverse LEED state implemented according
to the calculational schemes for LEED intensities and used KKR for the valence state as well.
It was thus designed for surfaces. Eq. (1.100) written in position space with help of the hole
Green functionGhole reads

I / Im

Z
d3r

Z
d3r0 < �?

LD
(E;k0

k
) j O j r > Ghole(r; r0; E � ~!;k0

k
) (1.103)

� < r0 j O+ j �?

LD
(E;k0

k
) >

Both the Green function and the LEED state are expanded in terms of spherical harmonics in
order to use the KKR scheme. An important simplification arose from the use of the matrix
element in the acceleration form because between the muffin-tin spheres the potentialV is
constant. The integration in the matrix element is thus confined within the muffin-tin spheres:
the wavefunctions need to be constructed here. An obstacle in this muffin-tin scheme was
found in the treatment of the potential barrier at the surface.

This method has been further completed by generalizing to the relativistic case [1,2,14,15,
40,46,105] The 2x2 spin density matrix� �;� 0 is evaluated via a formula similar to Eq. (1.103)
where the four component Dirac spinors< � j and j � > carry the index� and� 0, resp.,
G<(r; r0) is a 4x4 component Dirac matrix, and the transition operatorO contains the vector
potential as� �A using 4x4 matrices�ik = �(1 � Æik); i; k = 1; 2 with Pauli spin matrices
�. Spin-averaged photocurrent, spin polarization, and individual spin-resolved photocurrent
are obtained via spin averaging of the respective observables with the spin density matrix. A
transformation analogous to Eq. (1.93) confining integration to the muffin-tin spheres can be
used in this case, too.

The above scheme was further developed to include non-spherical parts of the poten-
tial. [44] The multiple scattering scheme remained essentially the same. However, instead
of a muffin-tin model the Wigner-Seitz cell with the so-called "true potential" inside and zero
outside the cell was taken to solve the Schrödinger equation within the circumscribing sphere
and matching to free solutions outside. The result served as the basis for the multiple scatter-
ing expansion.

The LEED scheme and similarly the above approaches according to their initial design
showed slow convergence for low kinetic energies with low damping. Additionally, the full
potential yields non-diagonal t-matrices which slows down the code again. A limitation to
spherical potentials was out of the question when considering semiconductors. Especially,
surface reconstructions specific to semiconductors made the scheme rather cumbersome. The
surface bandstructure could not be obtained within the Bloch scheme used leading to the
complex bandstructure only. The photoemission part of the code met similar difficulties in
treating emission from surface states which near the valence band maximum are scarcely
damped.
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FIGURE

Figure 1.8: Theoretical and experimental pattern of photocurrent into emission hemisphere withh� =

26 eV from Fermi energy for TiTe2(0001) (bottom); Fermi surface plot (top left) compared with energy
surface slightly aboveEF (top right) .

Thus, a separate approach was developed for such materials. It benefits from the existence
of self-consistent ab-initio calculations for the bandstructure. A suitable basisj  i > adapted
to or directly taking those solutions forms the representation for the initial states. It is con-
densed in a Green matrixGij for the halfspace system which includes an arbitrary surface
potential and is used in Eq. (1.100) to yield
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The basis normally chosen used a layer resolved LCAO set with Bloch sums along surface
parallel layers and respective Bloch vectorsk0

k
. Ab initio pseudopotentials are used for the

evaluation of final states.
As an example, the result of a calculation via 1.104 for TiTe2 is presented in Fig. 1.8.

Slight deviations in binding energy shown by the different energy surfaces in that figure can
be discriminated by a comparison of experimental with theoretical photoemission patterns
which confirms the matching of both energy scales in this case. The demand of computer
ressources for such a calculation consists of the whole of separate runs for each angle and
sums up to a still considerable amount even within this code which is fast compared to the
original KKR schemes.

1.6 Final state

We now turn our attention to the final state. This higher-energy state describes how the pho-
toelectrons scatter and propagate as they leave the emitter site and travel to the detector in the
vacuum outside the solid.

One point to keep in mind is that an electron in the final state senses a different potential
than an electron in the initial state: the difference in kinetic energy causes differences in the
effective potential felt by an electron.
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1.6.1 Direct solution of Schrödinger equation

In contrast to the multiple scattering procedure which actually uses Green functions as to
be subsequently discussed, the final states of photoemission may be directly incorporated
via their wavefunctions. This is especially useful in the low kinetic energy range where the
anisotropic potential in the interstitial region and at the surface becomes important. Plane-
wave based descriptions are convenient in a pseudopotential version though augmented plane
waves have started to be applied, too. [70] Thus, the path to an all-electron computation is
paved. The pseudopotential formalism is comparably fast and has been applied in most cases.

The evaluation of wavefunctions proceeds via a direct solution of the Schrödinger equa-
tion. The formulation of the boundary condition is a little tricky because physical intuition
would view it as an initial value problem solved backwards in time. The photoemission final
state in principle must be described as an outgoing state with plane wave asymptotics char-
acterized by the observed momentum in the detector at infinite time. Time is replaced by
the coordinate perpendicular to the surface such that plane wave asymptotics are required at
infinite distance from the surface in vacuum. An elliptic equation encounters numerical insta-
bilities which become apparent when using a step procedure as solver. One has to transform
the asymptotic condition into a boundary condition for a closed domain. This can be done
at a sufficiently remote interface within vacuum which leads to mixed boundary values, i.e.
a relation between the function and its derivative at that interface. [79] In formulating these
conditions use has been made of smooth continuity and vanishing potential at that fictitious
interface. It might be interesting to note that on the vacuum side of that interface a single plane
wave travels to the detector whereas a set of plane waves propagates towards the interface in
order to satisfy a correct matching. From the solid side a similar set is impinging onto the
surface such that the time reverse of all the terms constitutes a so-called scattering solution,
i.e. one plane wave incident and scattered waves into all directions. This degenerates here, be-
cause of the unboundedness of the laterally infinite scatterer, into two sets of scattered waves
travelling away from the interface into both half-spaces.

An intermediate step deserves separate consideration because it is appropriate for a short-
cut interpretation of photoemission data. One obtains the complex bandstructure as the so-
lution of the inverse bandstructure problem, i.e. prescribing the energy and solving for the
eigenvalues of the perpendicular momentum. The Bloch condition yields real and complex
values for that momentum, which is obvious especially for energies within the gap. One set,
that with exponentially increasing wavefunctions towards the semi-infinite bulk, is discarded,
but the remaining set constitutes a full set of states which are bounded in the bulk and are
bounded up to the surface in the opposite direction. The energy vs. Real(k?) relation yields
the complex bands with their imaginary part describing the exponential drop-off of such a
band state in the interior. Considering the correct solution as a superposition of such states,
those with large imaginary part will contribute less in view of a matching at the surface to the
outside solution. The spatial variation proceeds on a scale given by the kinetic energy and this
yields an order of magnitude beyond which a significantly shorter scale of decay will not con-
tribute. Plotting the complex bandstructure for only reasonably low imaginary part together
with the real bandstructure of the initial states of photoemission gives a first impression of the
photocurrent to be expected in the direct transition model. Figure 1.9 shows electron distri-
bution curves (EDC) for normal emission for GaN in comparing theory with experiment. [23]
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FIGURE

Figure 1.9: Theoretical (middle) and experimental [23] (right) normal emission spectra from Ga termi-
nated GaN(0001)1x1, intensity vs. binding energy for various photon energies as marked, with single
spectrum (bottom left) and both initial and complex final bandstructures ( top left) for photon energy
35 eV; vertical bars at theoretical spectra indicate main direct transitions; final state decomposes into
complex bands with weights denoted by bars at curves; both band systems are brought to coincidence
through shifting by photon energy.

Agreement is obtained that is typical for this spectroscopy. The origin of the theoretical peaks
is traced back in that figure to the intersection of the initial bands, shifted by the photon energy,
with the final bands thereby assuming direct transitions, i.e. strict momentum conservation.
The dispersion of the peaks with photon energy is indicated by dotted lines as a guide to the
eye. Following the binding energies of the intersections when the bandstructures’ shift by the
photon energy is varied scans the observed dispersion in the theoretical and experimental spec-
tra. In many cases it is appropriate to relax the accuracy slightly and to simplify the system so
that it consists of the bulk pseudopotential including an optical potential and the sharp edge of
a step-potential. In examples which need a more accurate modelling, e.g. of a surface layer,
two potential steps are convenient as well. Then, a simple matching of the wavefunctions, i.e.
plane waves in the region of constant potential and Bloch states of complex bandstructure in
the bulk, gives reasonable results if used for the final states of a one-potential-step calculation.
Matching instabilities at single energies occur which are manually removed by considering
energies close by. This difficulty and the lack of some accuracy is balanced by an appreciable
gain in computational time. The spectra in Fig. 1.9 are calculated by this scheme with one
potential step.

Among several methods for the practical solution of the above mentioned boundary value
problem, using the Laue representation together with layer doubling proved to be the fastest.
The basis of that representation consists of plane waves in the surface parallel directions,
their coefficients depending on the perpendicular coordinatez. The latter solve a system of
ordinary differential equations (indexed by the reciprocal lattice vectors of the plane waves)
with suitable boundary conditions with respect to the perpendicular coordinate. Discretizing
z leads to an algebraic system with a matrix that is band diagonal with respect toz in its ki-
netic energy part but also in its potential part, provided the latter has a suitably limited range.
With respect to the discretizedz a layer doubling renormalization converges rapidly to the
entire halfspace. The method uses pseudopotentials. Ab-initio pseudopotentials have to be
transformed to a quasi-local form. [5,11,98] An example for such a final state wave function
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FIGURE

Figure 1.10: Plot of phase, a and d, and modulus, b and c, ofwavefunction for Si(001) entering surface
from vacuum (top) to solid (bottom), inclied electron escape (a,b), normal escape (c,d); dots show nuclei
positions, frame indicates interface.

FIGURE

Figure 1.11: Wave functions Fourier transformed along (0001) direction (A�A) of TiTe2(0001), for
each energy intensity of shading represents modulus of Fourier coefficient vs.wave vector; real band-
structure (black lines)is underlaid.

is shown in Fig. 1.10. Phase coherence is quickly lost in penetrating into the solid via more
inclined directions. The potential may contain complex parts to account for the optical po-
tential or more general many-body corrections, see below. In an example for TiTe2 a series
of final state wave functions between 5-100 eV has been computed and subsequently Fourier
transformed with respect to its surface perpendicular position dependence to yield Fig. 1.11.
Only slight differences occur by either fixing somehow or averaging the surface parallel posi-
tion component. It is an obvious message that only one band, which, of course, is backfolded
and actually is close to a parabola, dominantly contributes, i.e. plane waves distributed in a
rather narrow range around the the parabolic dispersion constitute mainly the final state. This
is often anticipated in experimental analyses. It was found for the layered transition metal
dichalcogenides and for III-V semiconductors. However, the distribution becomes broader for
higher energies and furthermore, the behaviour is best established for normal emission and
deteriorates for inclined directions. The experimental confirmation of the correctness of the
final states’ calculation arises from ARUPS rather indirectly because the latter is primarily
determined by the initial states in valence band spectroscopy. Core-level initial states might
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give a more direct access because of their lack of dispersion, but that is not yet in actual favor.
A direct method is available via very low energy electron diffraction (VLEED) with inten-
sity spectra,I(U), which yield the angle dependent electron reflection and absorption in the
elastic channel. This is intimately described by the wavefunctions used for the final states
which can thus be tested. [104]. Total current spectroscopy represents the complementary
case of this method. [89,98] A simple illustration follows from the fact that the incident elec-
tron is strongly reflected by the surface in those energy regions where a gap appears in the
bandstructure of the solid.

Finally, the obtained wavefunction is inserted into the Golden Rule, Eq. (1.100), for
j�?

LD
(E;k0

k
) > which is integrated in direct space to calculate the photocurrent.

At this point, a remark must be made about the optical potential physically motivated by
the losses of the propagating electron and a necessary ingredient for convergence in the bulk.
Seen from many-body theory, such losses are represented by the lifetime of a quasi-particle
state, which corresponds to the imaginary part of the self-energy�. Apart from heuristic
approaches to this quantity, especially to its energy dependence, it can be calculated nowadays
in a more systematic way, e.g. via the "GW " approximation, i.e. writing the self-energy as
a product of the Green functionG and the screened Coulomb interactionW according to the
first term of an expansion with respect toW . Then the real part of� is accessible, too, and the
entire quantity may be used as the quasi-particle correction to the final state. The solution for
these states as described above can include the self-energy in a very general form, i.e. more
general than in a merely energy dependent form.

The presence of the self-energy is required within the quasi-particle Green function which
in turn is obtained by Dyson’s equation, on one hand. On the other hand, the self-energy is
represented by a set of quasi-particle states which are obtained from a solution of the homoge-
neous variant of the Dyson equation which corresponds to the usual Schrödinger equation plus
a complex�. Thus, in the excited energy regime these states may be considered as final states
of photoemission taking suitable boundary conditions. [98] In the occupied energy regime they
represent the initial states. It follows that, because� is energy dependent, both sets of states
belong to different one-particle hamiltonians even for the hermitean no-loss case. Therefore,
it is not required that the states emerge from one single hamiltonian. This gives freedom to
treat the states by different methods adapted more specifically to each energy range.

The form ofIm� in the final states’ regime follows a general shape, specifically, it in-
creases from a low value, below a tenth of an eV at the bottom of the conduction states, with
a significant jump at the plasma frequency up to several eV in the VUV range of photoelec-
tron spectroscopy. The increase through plasmon losses is sometimes modelled by a Fermi
function-like shape. [43] The consequence of that increase is generally an increase of the
imaginary part of the Bloch vector and consequently of the perpendicular momentum non-
conservation or spread of indirect transitions. It does not increase the width of the photoemis-
sion peaks. That is determined by the lifetime of the occupied states. Actual state-of-the-art
calculations use theGW approximation. [35, 37, 97] A comparison for TiTe2 between the
heuristic shape and that calculated byGW for the unoccupied states reveals a rough agree-
ment in the overall dependence whereas the details differ, see Fig. 1.12. Slope and edge
position can thus be calculated. The asymptotic decrease in the magnitude of theGW result
is attributed to the energy cut-off.

Some additional structure is present in theGW plot and is reminiscent of the electronic
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FIGURE

Figure 1.12: Im� as matrix in reciprocal lattice vectors calculated withGW for diagonal elements
(left), (1,1) element to be compared with empirical optical potential, and for non-diagonal elements
(right).

transitions which appear in the dielectric function involved in the screened interactionW .
However, the details are smoothed by the integrations involved in the calculation. A scheme
for an independent determination of (Im�) via VLEED has been recently described. [72]

1.6.2 Multiple scattering method

An alternative approach for dealing with the final state wave function is to actually consider
the individual scattering events suffered by the photoelectron in its elastic interaction with
the solid atoms along its way to the detector. This is the so called multiple scattering (MS)
method, which consists in calculating the one-electron wave function of the photoelectron as
the sum of the direct unscattered photoemission wave and the result of MS due to the surface
atoms.

In this context, the surface atoms are usually described by spherically-symmetric muffin-
tin potentials, and this is a good approximation for electrons with relatively high kinetic energy
(E > 50 eV); these are insensitive to the details of the atomic potential tails and see the atoms
basically as spherical entities [90]. The generalization to space-filling arbitrary potentials can
be made with some care [42].

Two basic approaches are in use to represent a surface: the semi-infinite model which
preserves periodicity in two dimensions, and often truncates the surface to a finite depth as
a slab; and the cluster model, which retains only a finite-size piece of the surface, thus more
easily allowing non-periodic structures to be represented. The semi-infinite model is used in
particular in the work of Pendry, Tong and others [91,107] In the following, we will describe
the cluster model, which is simpler but also functions as an ingredient in many semi-infinite
models.

Thus, we shall approximate the solid by a cluster of non-overlapping spherical muffin-tin
potentials. The size of the cluster is dictated by the finite electron mean free path. Each muffin-
tin potential represents a solid atom centered at a positionR�. The potential outside the
muffin-tin spheres and within the solid is set to a constant value, the muffin-tin zero, to which
the photoelectron energyE is referred. The effect of inelastic attenuation is incorporated by
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adding a small imaginary part toE [90] (which is equivalent to adding it to the photoelectron
self-energy).

For simplicity, we shall consider core-level photoemission, so that the initial-state wave
function is fully contained within the muffin-tin sphere of the emitter atom, which we will
denote�0. This will be generalized to extended initial states (e.g., in valence photoemission)
in Sec. 1.7.

To represent scattering by the atoms, the electron wave function is then expressed in spher-
ical harmonics and spherical Bessel functions centered on each atom of the cluster. In particu-
lar, the direct photoelectron wave function�0 (that is, the wave which originates at the emitter
in the absence of MS) can be projected on a complete basis set of outgoing and incoming
spherical waves centered on the emitter, and the physical requirement that there should be no
net incoming flux for any partial wave component leads to the fact that only outgoing waves
contribute in this case. More precisely,

�0(r) =
X
L0

h
(+)

L0
[k(r�R�0)]'

0
L0

(1.105)

for r outside the muffin-tin sphere of the emitter�0, whereh(+)
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represents an outgoing spherical wave,h
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l
is a spherical Hankel function [85],L = (l;m)

labels spherical harmonicsYL, andk =
p
2E is the electron momentum relative to the muffin-

tin zero.
In order to study MS effects, we need to consider�0(r) near the other cluster atoms

� 6= �0. This can be conveniently done by expressing each of the partial wavesL 0 of �0 in
terms of spherical waves centered on another atom� 6= �0, which can be done by using the
translation formula of spherical harmonics [88]
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and jL = iljlYL is a spherical wave centered at� that can be regarded as the spherical
component of a plane wave passing by atom�.

The above translation allows one to express Eq. (1.105) as a sum ofjL waves in the vicinity
of a given atom�. The contribution of the scattering of these waves from� is obtained if we
make the substitution

jL ! jL +
X
L0

t�;L0Lh
(+)

L0
; (1.108)

wheret�;LL0 is the so-called scattering matrix, which for spherical atoms, becomes diagonal
and is given in terms of the scattering phase shiftsÆ�

l
as [85]

t�;LL0 = t�;lÆLL0 = sin Æ�
l
eiÆ

�
l ÆLL0 : (1.109)
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The second term in Eq. (1.108) is the scattered part of a plane wave component, as obtained
by standard partial wave analysis [90]. Then, summing over all possible first-order scattering
events (i.e., over all atoms�), the photoelectron wave function calculated within first order
reduces to
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where
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and�0
�;L0

= Æ��0'L0 are the direct wave coefficients, which are zero for atoms other than the
emitter�0.

This procedure can be repeated with each of thehL components of Eq. (1.110) to lead to
second-order scattering and so on. A recurrence relation can be obtained in this way, so that
the coefficients of the expansion at ordern can be obtained from those at ordern� 1 as

�n
�;L

= �0
�;L0

+
X
L0L00

t�;LL00
X
� 6=�

G��;L00L0�
n�1
�;L0

; (1.112)

where the restriction that� 6= � reflects the fact that the unscattered propagation from any
atom to itself must be excluded.

In then!1 limit, Eq. (1.112) becomes a self-consistent secular equation,
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which has to be satisfied by the wave function components��;L of the photoelectron wave
function
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outside the muffin-tin spheres.
From a numerical point of view, Eq. (1.113) can be approximated by a finite system of

N(lmax + 1)2 equations if one considers a cluster ofN atoms and a maximum angular mo-
mentum numberlmax, which scales roughly aslmax � krmt with the electron momentum
k and the atomic muffin-tin radiusrmt. Unfortunately, the direct inversion of Eq. (1.113)
is computationally very demanding and can be performed only for very limited cluster sizes
and small values oflmax (low energies) [45]. Therefore, approximations have been intro-
duced [90], some of them inspired by the high-energy limit, where the electron propagation
reduces to plane-wave factors (plane-wave approximation) and each term in the MS series
becomes a product of scattering amplitudes [7,8,62]. Beyond this, full curved-wave formula-
tions of the problem have been also implemented [18,26,92].

Codes based upon the Rehr-Albers formalism make use of a convenient factorization of the
path Green function into matrices that represent individual scattering events and that contain
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curved wave effects up to any required accuracy (e.g., MSCD [18]); this results in a compu-
tation time that scales with the cube of the number of atoms in the cluster, but a path-cut can
be introduced to reduce the computational demand drastically at the expense of small errors
arising in the truncation of the multiple scattering series.

It is also possible to solve the multiple scattering equations without any approximation in
the Green function by using iterative techniques based upon the recursion method. This is the
procedure employed in EDAC [26], which presents the advantage of preventing any eventual
lack of convergence in the multiple scattering. The computation time in this code scales with
the square of the number of atoms, which allows calculations for clusters of up to several
thousand atoms.

1.7 Matrix elements: core versus valence levels

The theoretical model introduced in Sec. 1.6.2 for calculating the photoelectron intensity from
a core level can also be applied to study the photoemission from extended states, such as
valence levels of molecules, clusters or solids. When the initial state of the electron is extended
over several atoms, the initial wavefunction can be expanded as:

	i(r) =

emittersX
a

X
L

�aL 
a

L(jr� raj)YL(
r�ra) : (1.115)

In the latter equation, a
L
(r � ra) are atomic orbitals centered about sitea. The initial state

is thus a combination of several atomic orbitals (hence the sum overL) at several sites (hence
the sum overa). The factors�a

L
are the coefficients of this linear combination.

Following a formalism similar to that of core-level photoemission, the wavefunction at the
detector position�(Rd) can be obtained as:

�(Rd) =

emittersX
a

e�ikra
X
L

�aL

atomsX
�

X
L0

�aL�;L0
eikRd

kRd

YL0(
Rd
) ; (1.116)

where the coefficients�aL
�;L0

now depend onL anda as well (the initial atomic orbital of
quantum numbersL at emittera), and the Hankel functions of Eq. (1.114) have been replaced
by their asymptotic expansions. The final wavefunction (and consequently the photoelectron
intensity at the detector position) is thus obtained as a coherent sum over emittersa with
coefficients�a

L
. An additional phase factore�ikra accounts for the electron path difference

between emitters. This assumes in-phase arrival of the incident photon wave at all emitter
sites, namely an infinite photon wavelength; an additional phase factor can be inserted to
account for a finite photon wavelength.

In the case of a perfect three-dimensional periodic lattice (for instance, an ideal infinite
crystal without any surface), the initial state in the photoemission process can always be
described as a Bloch state. In this case, the coefficients multiplying the atomic orbitals in
Eq. (1.115) can be written in a different way, so that the Bloch condition is apparent:

	i(r) =

emittersX
a

eikra
X
L

KL 
a

L
(jr� raj)YL(
r�ra) : (1.117)
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The new coefficientsKL do not depend on the sitea because all sites are equivalent. They
only depend on the quantum numbersL. The vectork, which satisfies the Bloch condition,
has the same dimensions of the periodic lattice. It does not change during the photoexcitation
process (the electron momentum is conserved in the limit of an infinite photon wavelength).
The final wavefunction at the detector position is then:

	f (Rd) =

emittersX
a

eikra
X
L

KL
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�

X
L0

�aL�;L0
eikRd
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e�ikr�YL0(
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) : (1.118)

In the latter equationN is a normalization constant arising from the sum over equivalent
lattice sites, with no important role in the calculation of the intensity. Eq. (1.118) shows that,
for a 3D periodic system, the final wavefunction (and consequently the photoelectron intensity
at the detector position) can be evaluated by calculating the photoelectron intensityfrom one
single sitea; more generally, from all those sites that are translationally inequivalent within
a unit cell. Every single equivalent site of the lattice emits coherently but there is no phase
shift among the photoemission processes from different equivalent sites for an infinite photon
wavelength. A similar formalism can be developed for a system in which there is periodicity
in only two dimensions. Then emitters at different depths are no longer equivalent and their
emission must be considered separately, but still coherently.

For a finite photon wavelength, the photon path differences among different emitters must
be included in the previous equations. Especially for very large systems, such as with infinitely
extended initial states, an additional phase factor, depending on the emitter position and on
the light wavevector, will thus appear in Eq. (1.118).

1.8 optical effects

Generally, the photons can be dressed by any type of excitation that they are able to produce
in a solid (e.g., plasmons, phonons, and all kind of quasiparticles).

Screening of the external light is important for photoemission from solids, specially at low
photon energies, and in particular near the plasmon energy, in which case the medium induces
an electric field that can be comparable in magnitude to the external field provided by the light
near the surface. It then can be also comparable in wavelength with the atomic spacing.

Strong variations of the electric field near the surface can play a substantial role in the
so-called surface emission, which has been clearly observed in angle resolved photoemis-
sion [86], and that is relatively well described by the Fresnel equations [63], which requires
knowledge of the dielectric function of the solid material. The latter can be obtained from ex-
periment. In particular, for low photon energies (e.g.,< 50 eV) complex collective excitations
(e.g., plasmons) dominate the response. At these low energies, the photon wavelength (> 24
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nm) is much larger than the typical surface lattice constant, and therefore, principally the
medium should be well described by its macroscopic, frequency-dependent dielectric func-
tion, which neglects all kind of details on the atomic scale. But as it will be outlined in
subsection 1.8.2, induced local fields yield important perturbations on a lattice scale near the
plasmon frequency.

1.8.1 Resonant photoemission

Resonant photoemission is an interesting phenomenon which takes place when the photon
energy is tuned to a resonance of the emitting atoms. Then, the photoelectron has two different
emission channels: (i) direct excitation by absorbing an external photon and (ii) excitation
of the resonance followed by its decay while the excess of energy is carried away by the
photoelectron. These two different quantum channels leave the sample in exactly the same
final state, and thus, they have to be added coherently, leading to interference effects that in
general follow Fano profiles [29].

This phenomenon can be considered to be a screening effect: the external photon is dressed
by interaction with a many-body system that is able to hold localized excitations (the atomic
resonance), similar to excitons in solids. This is particularly important at low incidence angles,
which can limit the penetration depth of the light dramatically, especially in metals, where the
so-called skin depth of visible and near UV light is only a few nanometers. Also, dramatic
effects have been observed under total reflection conditions [52,84].

At higher photon energies (e.g.,> 100 eV), the response is governed by the X-ray scat-
tering factors of the solid atoms, so that the screening at those energies comes primarily from
dynamical X-ray scattering. Besides, theeffectivedielectric function at those energies is very
close to 1, since the response is small. However, some effects can be observed at the energies
of the absorption edges. More precisely, when the external light is tuned at the energy of an
absorption resonance of one of the atoms in the solid, strong induced fields comparable in
magnitude with the external field are produced, especially at low incidence angles. This has
been recently observed in photoemission from O 1s in MnO illuminated with light near the
Mn2p absorption edge ( 640 eV) [25,66,67]. The O 1s photoelectron signal showed a strong
modulation near that photon energy, and this has been explained in terms of the Mn resonating
atoms, which suffer virtual excitations by the incoming light to decay later while transferring
the excitation energy to O 1s electrons.

This is the so-called multi-atom resonant photoemission (MARPE), which provides a way
to identify the chemical nature of neighboring atoms in a solid, since the resonance energy
is a characteristic of one kind of atoms while the observed photoelectrons are emitted from a
different kind of atoms. An example of this if offered in Fig. 1.13 for emission from oxygen
near the Mn2p absorption edge in MnO [25, 66, 67]. The theory in this figure is based upon
first principles calculation of the atomic polarizability of Mn in MnO and multiple scattering
of photons in between different Mn scatterers. The result of this multiple scattering produces
an effect that can be also explained in terms of a dielectric model (using Clausius-Mossotti to
convert the Mn polarizability into dielectric function), where the emission intensity maps the
square of the external electric field at the surface region.

A very good agreement has been obtained between theory and experiment in this latter
case, and also between a microscopic theory of the solid response based upon first principles
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calculations of the atomic scattering factors as compared with a macroscopic description using
Fresnel’s equations and the dielectric function derived from the Clausius-Mossotti relation.

Beyond this simple model,ab initio theories have been developed to compute the response
function of the solid, although severe approximations have to be made in order to cope with
the complexity of the surface. These models take into consideration the detailed bandstructure
of the solid in order to construct the response function. In the simplest scheme, one simply
uses one-electron wave functions to obtain the RPA susceptibility [59]. While this approach
generally gives good results for metals, several problems emerge when it is applied to insu-
lators: excitons are not described at all and one needs to go beyond the RPA and use the
Bethe-Salpeter equation for a correct description of electron-hole pairs [33].

1.8.2 Photoemission by surface optical response fields

The assumptions in Eq. (1.89), with respect to periodicity as well as to long wavelength,
must be questioned if the response of the emitting material to the incident light adds induced
fields capable of appreciable separate excitations. Such fields change on a length scale of the
lattice constant because they originate from the ionic polarizability, and they are non-periodic
because of the surface. These effects become important for a small real part of the dielectric
function�(r; r0; !) implying large fields for even small amplitude external light which might
occur especially for! near the plasmon frequency.

Because of their short wavelength these fields are denoted as "local fields" well known
from optics: they drastically change the homogeneous dielectric constant� 0(!) from its mi-
croscopic to the macroscopic observable value. The surface adds nonlocality to� as stressed
by noting the dependence on two local variablesr; r 0. It arises e.g. from surface scattering of
the electromagnetic wave and from further enhancement by plasmon generation. Though both
effects are well known in the literature, (the latter especially has been first observed in connec-
tion with photoemission [73]), the full incorporation into one-step photoemission calculations

FIGURE

Figure 1.13: Multi-atom resonant photoemission in MnO(100) surfaces.(a) A photon can produce
photoemission from an O atom, but in a different channel the same photon can excite a Mn atom of
the sample, which decays transfering its energy to the first O atom. The final state in both channels is
the same, so that they have to be added coherently.(b) Measured absorption spectrum near the Mn2p
edge, showing the energies where Mn can actually be efficiently excited.(c) O1s photoelectron intensity
within the Mn2p resonance energy range.
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is still lacking. A few calculations include the dielectric function in the determination of the
photocurrent, but use more or less heuristic models. Two examples applying to solids will be
described in the following (further details may be found in Ref. [97]): In particular, optical
investigations carry more information about local fields [71] and surface response [76].

Local fields are conveniently illustrated in layered crystals, e.g. in TiSe2 where they appear
as polarization fields perpendicular to the layers, i.e. parallel to the axis of the valence Se-
pz orbitals across the layers. Thus, the induced field will couple to that orbital leading to
additional photoemission from it. Quantitatively, the vector potentialA in Eq. (1.87) must be
replaced by

AG(!) = (��1)G0A
ext
0
(!) (1.119)

whereAext refers to the incident external light,G denotes a reciprocal lattice vector, and(��1)
refers to the matrix element with respect to the two vector indicesG and0. Here, the incident
wavelength is assumed long compared to the lattice spacing, which is valid up to the vacuum
ultraviolet regime. Values for�must be taken from separate optical calculations. They show a
strong enhancement near the plasma frequency, i.e. around 20 eV for TiSe2, which can cause
100% changes in the photocurrent, leading to a dominating peak for the Se-p z emissions.
The reciprocal lattice vectorG of the prominent induced-light component is2�=c [0001], the
first non-zero vector perpendicular to the layers corresponding to a wavelength equal to the
perpendicular lattice spacingc. [10]

Nonlocal response also has been investigated for layered materials. Owing to the lack of
any general ab-initio determination of the surface response, the hydrodynamic model of the
bulk electron gas may give a first impression of the induced longitudinal plasmon waves and
the correspondingly longitudinal response fields for photons above the plasmon frequency.
Because of the boundary conditions, the induced field points perpendicularly to the surface
and propagates into the interior of the solid. It varies locally on a scale involving the valence
electron density and the difference between light and plasma frequency: the induced field in-
creases when the plasma frequency increases and the light frequency decreases. Again, the
corrected field is introduced into the photoemission calculation via Eq. (1.119). [95] Simi-
lar to the above case, the additional field can excite Se-pz emissions, also yielding a 100%
enhancement of the photocurrent close to the plasma frequency above it. [95]

This topic is now still developing from its rather model-like state, depending on the growth
in computer power. The effect on the electron distribution curves of photoemission can be
extremely large, such that its neglect produces doubtful peak heights and peak positions under
the above circumstances of observation. In Fig. 1.14 the high significance of these effects
becomes apparent. A structure dispersing between0 and�2 eV which consists mainly ofp z
orbitals is enhanced by including the local fields induced by the incident photon in contrast to
the non-dispersive peak at�3 eV. The experiment reveals that the theory overestimates this
effect which, of course, is related to the crude approach of using the bulk dielectric matrix for
the local fields.

An ab-initio calculation of the full dielectric matrix function for semi-infinite systems has
been completed recently. [16] Its application to photoemission with the aim considered here
is in progress.
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FIGURE

Figure 1.14: Theoretical photoelectron spectra at left, including (solid) and neglecting (broken) local
fields, for normal emission from TiSe2(0001) with bandstructure plotted on top, compared with experi-
mental spectra [4] at right; photon energy as parameter at the curves

1.9 Spin effects

The spin of the electron plays an important role in photoemission from magnetic atoms or
when states that suffer strong spin-orbit coupling are involved. Normal detectors do not dis-
criminate between spin polarization of the photoelectrons, unless strongly spin-polarized ini-
tial states are considered [101,106]. However, the increasing enhancement in photon flux from
new generations of synchrotrons and free-electron lasers are making it possible to collect rea-
sonable signals using spin-selective Mott detectors, where the electron detection efficiency is
low since spin separation is performed by tiny differences in the angular distribution of Mott
scattering of photoelectrons at the detector.

Magnetic samples define a category of experiments where spin is important. Common
techniques in this context involve measuring magnetic dichroism, that is, the fractional change
in photoelectron intensity either when the magnetization of the sample is reversed [54] or when
the light polarization is changed (e.g., from left to right circularly polarized light [101]).

From an atomic point of view, the magnetic dichroism signal in core-level photoemission
permits establishing the magnitude of spin-orbit coupling in the final state of the ionized emit-
ting atom [100]. It also provides quantitative information on the magnetic moment of oriented
magnetic atoms, and can be used to determine Curie and Néel temperatures near the surface
of the material from which the photoelectron originates (these temperatures may differ from
the bulk values [106]).

Spin effects are to some extent a reflection of the initial and final states of the emitting
atom, which can be generally described by one-electron states in the case of closed shells
(e.g., in emission from Fe2p or Gd4d [100]). General open shell configurations however
involve complex many-electron states, which result in photoemission spectra composed of
many multiplet lines.

Multiple scattering of the photoelectron introduces additional spin dependence originating
in the different scattering properties of electrons polarized either parallel or antiparallel with
respect to the magnetic moment of the atoms [53,106]. Besides, spin-orbit coupling effects in
photoelectron scattering from solid atoms (Mott scattering) can play an important role even in
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the VUV region. This is particularly true along scattering directions of strong spin anisotropy
when they coincide with atomic bonds that produce forward focusing effects. These effects
introduce spin dependence in multiple scattering for non-magnetic atoms as well [102].

Spin effects can be easily implemented in the multiple scattering scheme discussed in
Sec. 1.6.2. In particular, the atomic scattering matrix needs to be supplemented by the elec-
tron spin quantum number. In magnetic atoms with negligible spin-orbit coupling, the scat-
tering matrix can be split into disconnected spin-up and spin-down pieces, each of which is
described by the corresponding atomic potential that takes into account exchange and corre-
lation effects [108]. When spin-orbit coupling is included, a complex interplay with magnetic
exchange leads to dense scattering matrices [102, 103]. Finally, the propagation of the elec-
tron in the muffin-tin interstitial potential can be performed in the same way as in Sec. 1.6.2,
independently for each spin component. These possibilities are contemplated in the EDAC
code [25] (see Sec. 1.10)".

1.10 Computer codes for photoelectron diffraction and
spectroscopy

A variety of computer codes have been written to simulate photoelectron diffraction. A major-
ity of these codes were designed for surface structure determination, similar to LEED codes.
This often includes some form of automatic fitting of structural parameters such as atomic co-
ordinates that affect interlayer spacings or bond lengths near the surface. Other codes aim to
study different aspects of surfaces, including magnetic or relativistic effects, electronic band-
structure and/or the spatial distribution of electrons.

We here discuss and compare several codes for which we have detailed information (a
number of other codes exist):

� MSPHD by R. Gunnella, C.R. Natoli, F. Solal and D. Sébilleau
(superfici.unicam.it/photoelectron_diffraction.htm)

� SPEC by D. Sébilleau;

� PRAPD by M.D. Pauli, H.C. Poon, D.K. Saldin and A. Wander (giotto.phys.uwm.edu) –
this code also models Auger electron diffraction;

� ‘Fritzsche’ (as we will call this code, since it does not appear to have an established
name) by V. Fritzsche;

� MSCD by Y. Chen, M.A. Van Hove, C.S. Fadley, F. Bondino and R. Díez Muiño
(http://electron.lbl.gov/mscdpack/mscdpack.html);

� EDAC by F.J. García de Abajo, M.A. Van Hove and C.S. Fadley
(http://electron.lbl.gov/edac, http://csic.sw.ehu.es/edac);

� ZBE110 by J.-V. Peetz and W. Schattke
(http://www.theo-physik.uni- kiel.de/theo-physik/schattke/);
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� KSAP by T. Strasser, C.-H. Solterbeck, J. Henk, A. Bödicker and W. Schattke
(http://www.theo-physik.uni-kiel.de/theo-physik/schattke/);

� ISOLDA by E.E. Krasovskii, F. Starrost, O. Tiedje and W. Schattke
(http://www.theo-physik.uni-kiel.de/theo-physik/schattke/).

The codes can be distinguished according to their basic geometric approach: atomic clus-
ters of various shapes and sizes vs. two-dimensionally periodic surfaces of variable depth. As
with electronic structure calculations at surfaces, the relative advantages and disadvantages of
these two fundamental choices have been hotly debated. For core-level emission, in which
a single atom emits waves of spherical character (since other atoms emit incoherently), the
cluster approach is intuitive: it is used by MSPHD, SPEC, Fritzsche, MSCD and EDAC. For
core- level emission, the periodic-surface model requires thinking in terms of ’inverse LEED
states’, so that plane waves become prominent and LEED-like layer-by-layer methods become
applicable, as used in PRAPD, ZBE110 and KSAP.

Very few photoelectron diffraction codes can now handle valence-level emission; excep-
tions are KSAP and ISOLDA. With valence levels, the initial state is a molecular or band state
that extends over several atoms or an infinite number of atoms. Photoemission from such a
state can be viewed as the coherent superposition of atomic-like emissions, and this can be
done within either a cluster model or a periodic-surface model; the latter has clear advantages
for dealing with infinitely extended valence bands and resembles the current highly-developed
bandstructure codes. As the photoemission final states are not accessible by these bandstruc-
ture codes, an independent confirmation through VLEED or TCS in this energy domain de-
serves interest. Such information is supported by calculations via codes such as ZBE110
because of their full-potential capability.

The different codes generally can model the various standard modes of data collection:
polar and azimuthal scans, hemispherical scans, energy-dependent scans, and combinations
of these. Most codes also accept both linear-polarized and unpolarized light, while a few
allow circular and elliptical polarization of the incident light (MSCD, EDAC).

However, very few codes consider the effect that the surface has on the incident radiation
itself: its refraction, change of polarization, attenuation, etc. KSAP is an exception, since it
includes these effects via the input.

The photoexcitation is normally treated in the Golden Rule approximation, assuming the
dipole and sudden approximations (MSPHD uses theZ +1 approximation). With EDAC and
KSAP, non-dipole effects can be included through an input file.

Relativistic and magnetic effects are usually only allowed to the extent that the electron
scattering phase shifts that are input from an external source include relativistic effects. EDAC
explicitly includes both relativistic and magnetic effects through spin-dependent phase shifts
and scattering amplitudes, yielding for instance spin polarization. Furthermore, this code is
fully automated, and in particular, scattering phase shifts and excitation matrix elements are
calculated internally without the need for further input.

Many schemes for treating photoemission either by multiple scattering or by direct solu-
tion of the Schrödinger equation have been programmed: each code seems to use a different
formulation. However, it is accepted that all these schemes can converge to the same correct
result if brought to full convergence, even though there are cases of divergence. Since in prac-
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tice each scheme is truncated due to limits on computer size and especially computing time,
some small differences in results are inevitable.

Inelastic effects (energy losses of the emitted electrons) are accounted for by one of two
schemes: complex phase shifts that include the loss process in the atomic scattering (MSPHD,
SPEC); or attenuation of the waves propagating from atom to atom with elastic atomic scat-
tering (all other codes). Attenuation can be described either as a mean free path or as an
imaginary component of the constant potential outside the atoms. In the direct solution of the
Schrödinger equation a complex optical potential is applied throughout space.

The effect of vibrations is mostly modeled through an uncorrelated Debye-Waller factor
acting at each scattering in a multiple-scattering path. Some codes neglect the effect altogether
(MSPHD, KSAP); others include a correlated Debye-Waller factor (MSCD) which takes into
account that the vibrations of nearby atoms are partly correlated, so that the apparent vibra-
tions are less strong as seen by an electron scattering in succession from nearby atoms.

The emitted electron has to pass the potential barrier step between solid and vacuum. This
is usually treated only as a refractive effect (with no reflection), but it is neglected in MSPHD:
refraction makes an electron change its propagation direction due to its change of momentum
perpendicular to the surface. In KSAP and ISOLDA, this effect is included to any desired
accuracy, including reflection.

The computational time requirements of the different codes have various scaling laws as
a function of the problem size: these scaling laws depend strongly on the particular algorithm
used to perform the multiple scattering. The time requirements normally grow significantly
with increasing electron energy, and with the number of inequivalent atoms. For instance,
PRAPD scales roughly asg2N , where g is the number of plane waves used and N is the
number of atomic planes present in the surface slab of finite thickness. MSCD and EDAC
scale asN3 andN 2, respectively, if N is the number of atoms present in the cluster. KSAP
and ISOLDA scale asN 3 with N being the number of atoms per surface unit cell of the semi-
infinite system.

Most codes are written in Fortran, and are generally run under Unix or Linux. MSCD and
EDAC are written in C++, having versions for PC, Mac, Unix and parallel machines (this one
only for MSCD).

The degree of availability, documentation and support of the different codes varies widely:
one should consult with the respective authors for details. MSPHD is available through
Computer Physics Communications. SPEC has short documentation and in-house training.
PRAPD is well documented and training is available. One may download MSCD with its
extensive documentation. A demo version of EDAC may be interactively run on the web,
while its full version is to appear in Computer Physics Communications. KSAP, ISOLDA and
ZBE110, with brief comments, are available on the web.
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